Научная литература
booksshare.net -> Добавить материал -> Физика -> Анищенко В.С. -> "Знакомство с нелинейной динамикой: Лекции соросовского профессора " -> 8

Знакомство с нелинейной динамикой: Лекции соросовского профессора - Анищенко В.С.

Анищенко В.С. Знакомство с нелинейной динамикой: Лекции соросовского профессора — Институт компьютерных исследований , 2002. — 144 c.
Скачать (прямая ссылка): znakomstvosnelineynoydinamikoy2002.pdf
Предыдущая << 1 .. 2 3 4 5 6 7 < 8 > 9 10 11 12 13 14 .. 49 >> Следующая


Наконец, рассмотрим еще один случай типичной структуры в фазовом пространстве динамической системы, возникающей, например, при периодическом возмущении системы с устойчивым предельным циклом. Добавим в уравнение (1.26) источник гармонического воздействия сравнительно малой амплитуды В и частоты р, которую будем считать рационально не связанной с частотой периодических колебаний автономного осциллятора:

X — а( 1 — Ъх2)х + X = В sin(рт + Lpo)- (1.29)

Периодическая модуляция предельного цикла автономной системы приводит к тому, что фазовая траектория с заданной частотой р вращается вокруг предельного цикла и лежит на двумерной поверхности, представляющей собой поверхность тора. Аналогично случаю предельного цикла эта поверхность будет устойчивым предельным множеством, к которому стягиваются со временем все траектории из некоторой окрестности тора (как изнутри него, так и снаружи!). Нетрудно представить себе, что минимальная размерность фазового пространства, в которое можно вложить двумерный тор, равна трем. На рис. 1.5,6' показана проекция на плоскость переменных xi, X2 фазовой траектории на двумерном торе, полученная численным интегрированием системы (1.29).

Регулярные и странные аттракторы динамических систем

Движения диссипативных систем целесообразно разделить на два класса: переходных, нестационарных движений, отвечающих процессу релаксации от начального к предельному множеству состояний, и класс установившихся, стационарных движений, фазовые траектории которых целиком принадлежат предельным множествам. Важными с физической точки зрения являются притягивающие предельные множества — аттракторы. С течением времени произвольное начальное состояние из некоторой области притяжения G, включающей в себя аттрактор Go, релаксирует к Go- Движение, которому отвечает фазовая траектория в области притяжения, есть переходной процесс. Установившееся движение характеризуется принадлежностью фазовых траекторий инвариантному предельному множеству, то есть аттрактору Go-Подробнее этот вопрос обсуждается в Лекциях 4 и 5.

Результатом исследований последних лет явилось обнаружение принципиально новых типов движений в динамических системах, по Регулярные и странные аттракторы динамических систем

25

сравнению с рассмотренными выше. Таким движениям в фазовом пространстве размерности N ^ 3 соответствуют сложным образом устроенные притягивающие множества, траектории изображающих точек которых не принадлежат ни к одному из описанных выше типов аттракторов. Фазовые траектории представляются здесь в виде бесконечной нигде не пересекающейся линии. При t —» оо траектория не покидает замкнутой области и не притягивается к известным типам аттракторов (см. Лекцию 3).

Именно с существованием таких траекторий связывают возможность хаотического поведения детерминированных динамических систем с размерностью фазового пространства N^ 3.

Впервые подобные свойства динамической системы в 1963 г. обнаружил Э. Лоренц при численном исследовании динамики трехмерной модели тепловой конвекции. Спустя восемь лет в теоретической работе Д. Рюэля и Ф. Такенса притягивающая область в фазовом пространстве динамической системы, характеризующаяся режимом установившихся непериодических колебаний, была названа странным аттрактором. Этот термин был сразу воспринят исследователями и утвердился для обозначения математического образа режима нерегулярных колебаний детерминированных динамических систем.

Аттракторы в виде состояний равновесия, предельных циклов или /-мерных торов называют простыми или регулярными, подчеркивая тем самым, что движения на них отвечают сложившимся представлениям об устойчивом по Ляпунову детерминированном поведении динамической системы. Со странным аттрактором связывается реализация нерегулярного (в смысле отсутствия периодичности) колебательного режима, который во многом сходен с нашими представлениями о стационарных случайных процессах.

Однако термин "случайный" имеет вполне определенный смысл. Случайное движение непредсказуемо либо предсказуемо с определенной вероятностью. Другими словами, траектории случайного движения нельзя многократно и однозначно воспроизвести ни в численном, ни в физическом экспериментах. Примером служит классическое движение броуновской частицы. В случае странного аттрактора имеется строгая предсказуемость в смысле детерминированности закона эволюции. Решение уравнений (как и для регулярных аттракторов) подчиняется теореме единственности и однозначно воспроизводится при фиксированных начальных условиях. Поэтому для обозначения сложных "шумо-подобных" автоколебаний, математическим образом которых служит странный аттрактор, используются термины типа динамическая сто- 26

Лекция 1. Динамические системы

хастичность, детерминированный хаос и подобные. Важно отличать эти процессы от стохастических в классическом смысле, которые при описании требуют учета флуктуаций в исходных динамических уравнениях либо непосредственно подчиняются уравнениям для плотности распределения вероятностей статистической теории [2,5].
Предыдущая << 1 .. 2 3 4 5 6 7 < 8 > 9 10 11 12 13 14 .. 49 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed