Научная литература
booksshare.net -> Добавить материал -> Биология -> Патрушев Л.И. -> "Искусственные генетические системы. Том 1" -> 77

Искусственные генетические системы. Том 1 - Патрушев Л.И.

Патрушев Л.И. Искусственные генетические системы. Том 1 — М.: Наука, 2004. — 256 c.
Скачать (прямая ссылка): iskusstvenniegeneticheskie2004.djvu
Предыдущая << 1 .. 71 72 73 74 75 76 < 77 > 78 79 80 81 82 83 .. 221 >> Следующая

В том случае, если разрушение бактериальных клеток проводят жесткими методами с применением ультразвука, растирания со стеклянными бусами и т.п., освобождение от эндогенных нуклеиновых кислот становится сложной задачей и требует фракционирования экстрактов с помощью ионообменной хроматографии. При такой хроматографической очистке фракции S100 из нее удаляются все аминоацилированные и свободные молекулы тРНК. Поэтому при реконструировании бесклеточной белоксин-тезирующей системы к объединенным фракциям рибосом и S 100-экстракта добавляют препарат очищенной суммарной тРНК.
Экстракты бактериальных клеток S30 и S100, кроме всех необходимых факторов трансляции, содержат и основные компоненты системы транскрипции, включая РНК-полимеразу, фактор терминации транскрипции р, CRP-белок и т.п. Поэтому для создания ДНК-зависимой системы сопряженной транскрипции и трансляции, в которой происходит полная экспрессия генов, находящихся под контролем бактериальных регуляторных элементов, как правило, не требуется введения в нее дополнительных белков. Достаточно внесения в систему экзогенной ДНК-матри-цы, транскрибируемой бактериальной РНК-полимеразой, а также четырех рибонуклеозидтрифосфатов, чтобы в ней начала активно синтезироваться мРНК и одновременно транслироваться рибосомами. В итоге в таких бесклеточных системах в ряде случаев удается синтезировать высокомолекулярные белки, обладающие ферментативной активностью.
Экстракты бактериальных клеток содержат многочисленные нуклеазы и протеолитические ферменты, которые понижают эффективность синтеза белков in vitro, разрушая мРНК и образуемые полипептиды. Для преодоления этих затруднений в бесклеточных системах часто используют экстракты мутантных бактериальных клеток, дефектных по РНКазам и полинуклео-тидфосфорилазе, а в сами бесклеточные системы при необходимости вводят ингибитор РНКазы из плаценты человека или ингибиторы протеиназ: лейпептин, пепстатин, химостатин и т.п.
Не существует больших ограничений на первичную структуру мРНК, транслируемых в бактериальных бесклеточных системах. Единственным необходимым условием их эффективной трансляции является отсутствие совершенной вторичной структуры или каких-либо особо прочных спиральных участков, стабилизированных кооперативными взаимодействиями. Вторичную структуру транслируемых мРНК обычно разрушают кратковременным прогреванием с последующим быстрым охлаждением непосредственно перед внесением ее в пробы.
GTP относится к обязательным компонентам бесклеточной белоксинтезирующей системы. Он не может быть заменен на любой другой из известных рибонуклеозидтрифосфатов и необходим для мРНК-зависимого связывания аминоацил-тРНК с рибосомами и транслокации. Поскольку при трансляции происходит непрерывное расходование GTP, а образующийся при этом GDP является ингибитором трансляции, в процессе функционирования бесклеточной системы осуществляют постоянную регенерацию GTP. Для этого применяют АТР в качестве донора фосфатных групп, которая, в свою очередь, регенерируется путем переноса фосфатной группы вводимого в бесклеточную систему фосфоэнолпирувата с помощью пируватфосфокиназы. Энергия макроэргических связей АТР используется также при аминоаци-лировании тРНК аминоацил-тРНК-синтетазами. В том случае, если создается бесклеточная система сопряженной транскрипции и трансляции, для осуществления синтеза РНК в нее вводятся еще два недостающих рибонуклеозидтрифосфата: UTP и СТР.
Для функционирования бесклеточных белоксинтезирующих систем необходимо обеспечивать в них определенные ионные условия. Наиболее существенным фактором в этом случае является концентрация ионов Mg2+. Достаточно изменения оптимальной концентрации Mg2+ в системе на 1-2 мМ, чтобы в ней перестали синтезироваться полипептиды, обладающие ферментативной активностью. При этом влияние ионов Mg2+ на суммарное включение аминокислот в синтезируемые полипептидные цепи проявляется в меньшей степени, что, по-видимому, объясняется нарушением точности включения аминокислот в белки при неоптимальных концентрациях ионов Mg2+. В системах in vitro ионы Mg2+ могут быть заменены на ионы Са2+ и даже Мп2+, а также частично замещены полиаминами: спермидином или спермином, которые благоприятно влияют на трансляцию и образование нативных белков.
Биосинтез белка в бесклеточных системах происходит также в присутствии ионов К+ или NH4 , оптимальные концентрации
которых составляют -100 мМ. Ионы Na+ ингибируют трансляцию, а ацетат-анионы в используемых солях предпочтительнее
анионов СГ. Ионы Mg2+, К+ и NH4 необходимы для ассоциации
субчастиц рибосом и поддержания их в компактной форме, а также обеспечения других их функций.
Несмотря на то, что в бесклеточной трансляции чаще всего находят применение системы с использованием S30- и S 100-экстрактов с добавленными рибосомами, современный уровень знаний молекулярных механизмов трансляции позволяет получать бесклеточные белоксинтезирующие системы из полностью очищенных компонентов. Однако создание таких систем является трудоемким процессом, поэтому их применяют только в аналитическом варианте для решения специальных задач.
Предыдущая << 1 .. 71 72 73 74 75 76 < 77 > 78 79 80 81 82 83 .. 221 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed