Научная литература
booksshare.net -> Добавить материал -> Биология -> Иваницкий Г.Р. -> "Математическая биофизика клетки" -> 52

Математическая биофизика клетки - Иваницкий Г.Р.

Иваницкий Г.Р., Кринский В.И., Сельков Е.Е. Математическая биофизика клетки — Наука, 1978. — 312 c.
Скачать (прямая ссылка): matematicheskayabio1978.djvu
Предыдущая << 1 .. 46 47 48 49 50 51 < 52 > 53 54 55 56 57 58 .. 121 >> Следующая

Эта способность возбудимых тканей восстанавливать свои свойства делает возможным возникновение так называемых авто-
волновых процессов — процессов, аналогичных автоколебательным процессам в сосредоточенных системах. Автоволновые процессы существенны для понимания активных сред самой различной природы: биологических, электрохимических, химических, физических.
Наибольший интерес при изучении возбудимых сред представляют источники волн, которые качественно отличаются от известных генераторов автоколебаний в сосредоточенных системах. Как будет показано ниже, источники волн могут возникать и в таких средах, где ни один из элементов не способен самопроизвольно возбуждаться (не является автоколебательным). Возникновение подобных источников связано с особыми пространственными режимами распространения волны возбуждения.
К настоящему времени изучены источники волн двух типов: ревербератор, представляющий собой вращающуюся спиральную волну, и эхо, или ведущий центр, посылающий концентрические волны. Возникновение источников спиральных волн было теоретически предсказано в работах Винера и Розенблюта [2], Бала-ховского [3], источников эха — в работе Кринского и Холо-пова [1]. Оба этих типа источников волн были экспериментально обнаружены в распределенной химической активной среде Жабо-тинским и Заикиным [5, 6].
Механизм возникновения и размножения источников волн исследован Кринским [4,20]. Процесс размножения источников играет важную роль в механизме фибрилляции, одной из наиболее опасных сердечных аритмий. Исследованию свойств источников волн, механизмов их возникновения, исчезновения и анализу параметров, контролирующих эти процессы, посвящена третья часть книги.
Для описания распространения волн возбуждения обычно используются системы нелинейных дифференциальных уравнений с частными производными параболического типа, аналогичные той, которую применили Ходжкин и Хаксли для описания распространения импульса по нервному волокну:
- С = D -g- + gSam*h (Е - Ет) + gKn* (Е - Ек) +
+ gi(E — Ei),
= [то (Е) — т\/хт; = [п (Е) — п]/хп;
¦%-=[R{E)-h]l xh.
Системы уравнений такого типа встречаются не только при изучении распространения волн в возбудимых тканях (нервах, мышцах), но и в математической экологии, теории клеточной диф-ференцировки, при описании распределенных химических систем, в теории горения и т. д.
Методы анализа подобных уравнений разработаны слабо. Аналитически удается рассматривать только автомодельное реше-ние — стационарное распространение волны. Первые успехи в анализе автоволновых процессов были получены не при исследовании уравнений с частными производными, а при анализе гораздо более простых моделей. Важную роль сыграла работа Винера и Розенблюта [2], в которой был предложен новый подход к анализу волн в возбудимых тканях, основанный на изучении формальной возбудимой среды. В этой модели среда представляет собой непрерывную совокупность элементов х, состояния которых дискретны, а для нее задано правило, определяющее взаимодействие элементов.
С помощью моделей возбудимых сред удается получать в аналитическом виде ответы на вопросы, которые в более детальных моделях пока вообще не удается исследовать: изучать типы и свойства источников волн в однородных и неоднородных средах, механизмы возникновения и взаимодействия источников.
Анализ автоволновых процессов в моделях с частными производными до последнего времени проводился только численными методами. В частности, воспроизведены оба типа источников волн, обнаруженные при изучении формальных возбудимых сред [5, 7]. И лишь недавно появились работы, где к изучению автоволновых процессов в моделях с частными производными применяются качественные методы анализа [8—10]. Начал также изучаться еще один класс моделей, промежуточных между моделями формальных возбудимых сред и уравнениями с частными производными. Такими моделями являются цепочки электрически связанных клеток. Эти модели, исследуемые качественными методами, позволяют связать возникновение автоволновых процессов с реально измеряемыми в эксперименте параметрами клеточной мембраны.
В настоящее время одно из основных приложений исследования источников спиральных волн в возбудимых средах связано с изучением различных патологий сердечной мышцы и прежде всего — сердечных аритмий, возникающих при аномальных режимах распространения волн возбуждения. Одной из наиболее опасных сердечных аритмий является фибрилляция желудочков сердца, при которой нарушается синхронизация сокращений отдельных мышечных элементов и сердце перестает нагнетать кровь, что приводит к мгновенным летальным исходам.
Попытки объяснения возникновения сердечных аритмий появлением источников возбуждения предпринимались уже давно. Еще в 1913—1914 гг. в работах Майнса и Гэрри [И, 12] круговое движение возбуждения вокруг отверстия (reentry) рассматривалось в качестве одного из возможных механизмов сердечных аритмий.
S. Возбудимые среды. Боаны и автоволновае процессы
Предыдущая << 1 .. 46 47 48 49 50 51 < 52 > 53 54 55 56 57 58 .. 121 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed