Научная литература
booksshare.net -> Добавить материал -> Биология -> Иваницкий Г.Р. -> "Математическая биофизика клетки" -> 38

Математическая биофизика клетки - Иваницкий Г.Р.

Иваницкий Г.Р., Кринский В.И., Сельков Е.Е. Математическая биофизика клетки — Наука, 1978. — 312 c.
Скачать (прямая ссылка): matematicheskayabio1978.djvu
Предыдущая << 1 .. 32 33 34 35 36 37 < 38 > 39 40 41 42 43 44 .. 121 >> Следующая

(3.44)
часы [101 —104] есть не что иное, как энергетический метаболизм в котором центральную роль играет цикл (3.44).
Проведенный анализ модели (3.1) и ее обобщений, а также известные энзимологические данные действительно подтверждают существование в третичной структуре энергетического метаболизма аллостерических регуляторных связей, контролирующих плато и гистерезис его нагрузочной характеристики. Важно отметить, что для подобного теоретического анализа нет необходимости знать a priori, какие аллостерические связи существуют на самом деле. Все возможные типы аллостерических регуляторных связей могут быть предсказаны заранее на основании теоретических расчетов, в которых используются различные гипотезы относительно вида регуляторных функций, подобных функциям ipj и гр3, использованным нами. При анализе влияния аллостерических регуляций различного вида на нагрузочную характеристику мы ссылались на экспериментальные данные лишь для того, чтобы указать, что по крайней мере некоторые из таких регуляций уже были экспериментально обнаружены.
Можно надеяться, что в будущем развитие теории полиферментных систем позволит реконструировать третичную структуру всего клеточного метаболизма исходя из его простейшей и древнейшей по эволюционному происхождению первичной структуры. В ходе такой реконструкции, безусловно, будут вскрыты фундаментальные закономерности клеточной организации.
г
МАТЕМАТИЧЕСКИЕ МОДЕЛИ ВОЗБУДИМЫХ МЕМБРАН
Глава четвертая
КАЧЕСТВЕННЫЕ МЕТОДЫ В ИССЛЕДОВАНИИ МОДЕЛЕЙ МЕМБРАН
На основе записей ионных токов при фиксации потенциала Ходжкин и Хаксли построили феноменологическую модель мембраны аксона кальмара в виде системы дифференциальных уравнений четвертого порядка [11. Эта модель до сих пор является одним из наиболее точных описаний процессов возбуждения в мембране. Впоследствии были построены аналоги уравнений Ходжкина — Хаксли и для других возбудимых мембран: волокна Пуркинье сердца [2, 3], перехвата Ранвье [4], скелетного мышечного волокна [5] и др.
Модель Ходжкина — Хаксли и ее аналоги — сложные нелинейные системы не ниже четвертого порядка. Отсутствие аналитических подходов к изучению в таких моделях вопросов, представляющих интерес для электрофизиологии, в значительной степени сводило исследование модели Ходжкина — Хаксли на уровень численного эксперимента на ЦВМ [6—13].
Важный шаг в применении качественных методов для исследования моделей возбудимых мембран сделан в работе Фитц-Хью [И]. Им показано, что основные типы поведения мембран могут быть описаны на основе уравнений Ван дер Поля. Однако эти модели слишком абстрактны — они исходят лишь из самого факта существования А^-образной характеристики и не связаны с ионными токами реальных мембран. Для того чтобы получать более содержательное описание, необходимо исходить из данных экспериментального исследования мембран.
В главах 4, 5 описывается подход, сочетающий преимущества качественных методов математического анализа с детальным элек-трофизиологическим исследованием мембраны по записям ионных токов. В основе этого подхода лежит построение уравнений второго порядка и их анализ с помощью качественных методов, разработанных в теории колебаний. В частности, многие из интересующих экспериментатора сведений о мембране содержатся в одном простом графике — двух главных изоклинах уравнений мембраны — изоклинах E = 0ng = 0(E — мембранный потенциал, g — проводимость для медленной компоненты ионного тока). По-
скольку нуль-изоклины для релаксационной системы определяют ее фазовый портрет, то мы далее будем называть этот график фазовым портретом мембраны. Главы 4 и 5 посвящены в сущности построению фазового портрета мембраны и решению с его помощью самых различных задач. Глава 4 отражает постановку задачи в виде, обычном для теоретика — здесь исходными считаются заданные уравнения мембран. В главе 5 анализ проводится с точки зрения экспериментатора.
В главе 4 с помощью разделения быстрых и медленных движений уравнения мембран упрощаются до уравнений второго порядка. Анализ их фазовых портретов позволяет исследовать многие электрофизиологические характеристики моделей мембран, которые ранее изучались лишь численными методами. Этот подход демонстрируется на двух конкретных примерах — модели аксона кальмара и модели сердечного волокна, являющимися в некотором смысле «крайними»: большинство реальных возбудимых мембран обладает характеристиками, промежуточными между ними.
В главе 5 этот подход применяется уже не для анализа моделей, а для исследования реальных мембран. Здесь исходными считаются записи ионных токов, получаемые экспериментатором. В этом случае анализ оказывается особенно простым — для решения многих вопросов построения уравнений мембраны (даже уравнений второго порядка!) оказывается излишним. Основной инструмент анализа — графики нуль-изоклин строятся по записям токов.
Перейдем теперь к анализу уравнений мембран.
4.1. Построение уравнений второго порядка
Предыдущая << 1 .. 32 33 34 35 36 37 < 38 > 39 40 41 42 43 44 .. 121 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed