Научная литература
booksshare.net -> Добавить материал -> Химия -> Эмануэль Н.М. -> "Курс химической кинетики. 4-е изд." -> 126

Курс химической кинетики. 4-е изд. - Эмануэль Н.М.

Эмануэль Н.М., Кнорре Д.Г. Курс химической кинетики. 4-е изд. — М.: Высшая школа., 1984. — 463 c.
Скачать (прямая ссылка): Emanuel.djvu
Предыдущая << 1 .. 120 121 122 123 124 125 < 126 > 127 128 129 130 131 132 .. 178 >> Следующая

•НА 'ЩСОСК, НзСОСН,
ПА
н,со
-он
вп*
н,ссг
, осн,
ч/
\
а
осн,
323
Реакция катализируется эквнмолярной смесью фенола (кислота НА) и пиридина (основание В). Учитывая, что образовавшийся в комплексе катион пиридиния (ВН+) должен передать протон фенолят-иону (А~), легко видеть, что в этой реакции разрываются четыре связи и образуются четыре новые связи.
Гораздо более эффективным катализатором реакции мутарота-ции является а-оксипиридин, несмотря на то, что ОН-гр'уппа в этом соединении, выполняющая роль донора Н+, менее кислая, чем ОН-группа фенола, а атом азота в а-оксипиридине, выполняющий роль акцептора протона, менее основен, чем в пиридине. Это случай бифункционального катализа. Протонирование атома кислорода циклической формы тетраметилглюкозы, разрыв связи С—О и отщепление протона от гидроксильной группы при атоме Сг с образованием двойной связи протекают синхронно в восьмицентровом циклическом активированном комплексе:
Наиболее полно и совершенно все перечисленные факторы, обеспечивающие воздействие катализатора на субстраты, используются в биологических катализаторах — ферментах. В настоящее время в результате успешного развития рентгеноструктурного анализа белков установлена полная пространственная структура ряда ферментов и их комплексов с субстратами. В качестве примера на рис. 87 приведена схема взаимодействия фермента карбоксипепти-дазы с субстратом.
Карбэксипептидаза катализирует отщепление С-концевой аминокислоты от пептидной цепи, причем наиболее эффективно отщепляются кислоты, содержащие гидрофобные ароматические остатки!
-----гш—снц—с—>ш—си—с** ° + н2о. —*¦
II | чо-
324
На рис. 87 изображен концевой фрагмент расщепляемой полипептидной цепи и функциональные группы фермента, принимающие то или иное участие в каталитическом процессе. Два имида-зольных кольца (остатки аминокислоты гистидина) и карбоксильная группе остатка глутаминовой кислоты координированы с ионом цинка, заряд которого тем самым наполовину нейтрализован. Про-тонированная гуанидиновая группа (остаток аминокислоты аргинина) взаимодействует с ионизованной концевой карбоксильной группой субстрата. Этот же концевой аминокислотный остаток
Рис. 87. Схема активного центра фермента карбоксипептидазы (по данным Липс-комба, Рика, Хартсака, Кешо и Бетджа):
Показаны фрагменты пептидной цепи с функциональными боковыми группами. Цифры обозначают порядковые номера остатков аминокислот, которым принадлежат эти функциональные группы. Молекула субстрата изображена с утолщенными связями. в шести-членном активированном комплексе штрихами показаны образующиеся связи, а сплошными линиями — разрывающиеся связи
связан своим ароматическим кольцом с тремя гидрофобными радикалами фермента (остатки аминокислот изолейцина, тирозина и глутамина).
В результате этих взаимодействий, которые закрепляют в двух точках С-концевой остаток субстрата, пептидная связь в случае, если С-концевая аминокислота представляет собой Ь-пзомер, оказывается направленной на каталитический центр фермента, представленный ионом цинка и оксигруппой тирозина. Поляризация связи С=0 ионом цинка облегчает нуклеофильную атаку молекулы воды на электрофильный атом С. Участие оксигруппы тирозина обеспечивает синхронное протекание разрыва трех связей и образования трех новых связей в циклическом шести центровом активированном комплексе.
325
На этом примере видны некоторые важнейшие черты, свойственные большому числу ферментов. Во-первых, катализатор имеет как бы два центра—связывающий (контактный) и собственно каталитический. Один из них, представленный в рассмотренном случае протонированной гуанидиновой группой и тремя гидрофобными радикалами, обеспечивает образование комплекса фермент — субстрат (связывание субстрата ферментом), в результате чего расщепляемая связь направляется на каталитический центр. Собственно каталитический центр представлен в рассмотренном случае ионом цинка и оксигруппой тирозина.
Во-вторых, на этом примере видны структурные основы высокой специфичности ферментов, в частности стереоспецифичности. Так, если бы С-концевая аминокислота была D-изомером, то в рассматриваемом случае в сторону каталитического центра оказался бы направленным атом Н, а не группа — NH—СО—, и каталитический процесс не смог бы произойти.
Из изложенного ясно также, почему фермент катализирует разрыв пептидной связи именно С-концевой аминокислоты и имеет преимущественное сродство к остаткам ароматических аминокислот. Действительно, именно взаимодействие заряда концевой карбоксильной группы и наличие гидрофобного ароматического остатка обеспечивает взаимодействие субстрата с контактным центром фермента, которое обеспечивает нужную ориентацию гидролизуемой связи относительно каталитического центра.
Кинетические уравнения каталитических процессов
Каталитический процесс, протекающий по схеме (VI. 17), может быть описан с помощью двух кинетических уравнений, например
e,p,) = MS*l[E'], t.(E'> = /?1 [St] [Е] — fca [Sj] [E'l, (VI.18)
и чегырех соотношений материального баланса, которые в замкнутой системе имеют вид
Предыдущая << 1 .. 120 121 122 123 124 125 < 126 > 127 128 129 130 131 132 .. 178 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed