Научная литература
booksshare.net -> Добавить материал -> Физика -> Бутиков Е.И. -> "Физика для углубленного изучения 3. Строение и свойства вещества" -> 32

Физика для углубленного изучения 3. Строение и свойства вещества - Бутиков Е.И.

Бутиков Е.И., Кондратьев А.С., Уздин В.М. Физика для углубленного изучения 3. Строение и свойства вещества — М.: Физматлит, 2004. — 335 c.
Скачать (прямая ссылка): fizikadlyauglubleniyaizucheniya3stroenieisvoystva2004.pdf
Предыдущая << 1 .. 26 27 28 29 30 31 < 32 > 33 34 35 36 37 38 .. 151 >> Следующая


Современная квантовая теория ведет свое начало с 1926 г., когда Э. Шрёдингером было предложено уравнение, носящее ныне его имя и лежащее в основе квантовой механики. Разумеется, изложение квантовой механики выходит за рамки школьного курса физики, но мы можем обсудить разобранные выше экспериментальные факты и четко сформулировать, какой должна быть квантовая теория, способная последовательно объяснить все своеобразие явлений микромира.

Роль средств наблюдения в квантовой физике. Обсуждая причины неприменимости представлений классической физики в микромире, мы видели, что эта неприменимость обусловлена рядом абстракций, допускавшихся в классической физике. В классической физике молчаливо предполагалась независимость физических процессов от способов наблюдения и возможность наблюдать одновременно все стороны данного процесса. В области квантовых явлений это не так. Вспомните, например, опыт с дифракцией фотонов на двух щелях: определяя, через какое отверстие проходит каждый фотон, мы этим измерением принципиально изменяли протекание физического процесса, так что дифракционная картина на экране оказывалась полностью размытой.

Анализируя этот опыт, мы приходим к выводу, что основой нового способа описания явлений должен быть явный учет реальных возможностей измерений, проводимых над микрообъектами. Необходимым посредником при изучении таких объектов являются приборы: атомный объект может проявить свои свойства, только про-взаимодействовав с прибором. Например, путь микрочастицы становится видимым в результате конденсации паров в камере Вильсона или в результате почернения зерен фотоэмульсии, и т. п. При этом приборы и условия опыта должны описываться классически, путем задания значений параметров, характеризующих приборы. Параметры этих приборов могут, разумеется, задаваться лишь с точностью, допускаемой соотношениями неопределенностей.

Вероятность в классической и квантовой физике. В основу нового способа описания поведения микрообъекта следует положить результаты взаимодействия этого объекта с классически описываемым прибором. Свойства атомного объекта выводятся из рассмотрения результатов таких взаимодействий. Это не исключает возможности введения таких величин, которые характеризуют сам микрообъект независимо от прибора (заряд, масса частицы и т.д.), но в то же время позволяет изучать поведение объекта с той его стороны (например, корпускулярной или волновой), проявление которой обусловлено устройством прибора. Таким образом, появляется
§ 9. ЗАКОНЫ ДВИЖЕНИЯ В КВАНТОВОЙ ФИЗИКЕ

71

возможность рассматривать и тот случай, когда разные стороны и разные свойства объекта не проявляются одновременно. По Бору, свойства, проявляющиеся при взаимно исключающих условиях (вспомните обсуждение корпускулярно-волнового дуализма), дополняют друг друга в том смысле, что только их совокупность характеризует объект полностью. В этом заключается сформулированный Н. Бором принцип дополнительности, который сыграл огромную роль в обосновании современной квантовой теории. Рассматривать одновременное проявление дополнительных свойств не имеет смысла. Таким образом, в новом подходе и не возникает внутреннего противоречия в понятии «корпускулярно-волновой дуализм».

Итак, в основе описания — результаты взаимодействия микрообъекта с прибором. Но опыт показывает, что при данных внешних условиях результат взаимодействия объекта с прибором не является однозначно определенным, а обладает лишь некоторой вероятностью. Вспомните тот же дифракционный опыт: каждый фотон попадал в определенное место экрана, но предсказать точно, в какое именно, было невозможно; существовала лишь определенная вероятность попадания фотона в то или иное место. Таким образом, в описание микрообъекта, его состояния и поведения вводится новый элемент — понятие вероятности, а тем самым и понятие потенциальной возможности.

Понятие вероятности используется и в классической физике при изучении свойств систем, состоящих из большого числа частиц. Вероятности вводятся тогда, когда условия опыта не известны полностью и по неизвестным параметрам приходится проводить усреднение. Например, при рассмотрении движения молекул в газе нам неизвестны координаты и скорости каждой молекулы. Поэтому можно предсказать только вероятность попадания частицы в то или иное место. В классической физике вероятности отражают неполноту формулировки задачи, которая, быть может, практически и неизбежна, но в принципе устранима.

Описание состояния системы в квантовой физике. В квантовой физике вероятности имеют совсем иной характер. Здесь они принципиально необходимы; их введение характеризует не полноту условий, а объективно существующие при данных условиях потенциальные возможности. Следует отметить, что в процессе создания квантовой теории высказывалась точка зрения, что введение понятия вероятности и в квантовой механике все-таки связано с тем, что на самом деле микрообъекты обладают определенной, не известной нам внутренней структурой. Поэтому в квантовой механике, как и в статистической физике, приходится считать, что переменные, описывающие эту внутреннюю структуру, распределены случайным образом. Иными словами, в квантовую теорию понятие вероятности вводится только потому, что она не является полной; она станет полной только тогда, когда будут найдены величины, характеризующие внутреннюю структуру частиц.
Предыдущая << 1 .. 26 27 28 29 30 31 < 32 > 33 34 35 36 37 38 .. 151 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed