Научная литература
booksshare.net -> Добавить материал -> Физика -> Айзеншиц Р. -> "Статистическая теория необратимых процессов" -> 23

Статистическая теория необратимых процессов - Айзеншиц Р.

Айзеншиц Р. Статистическая теория необратимых процессов — М.: Иностранной литературы, 1963. — 127 c.
Скачать (прямая ссылка): statisticteoriyaneobratimihprocessov1963.djvu
Предыдущая << 1 .. 17 18 19 20 21 22 < 23 > 24 25 26 27 28 29 .. 38 >> Следующая


f + f' + r = 0 (7.24)

или

R.(f + f + r) = 2*. (7.25)

Эти условия совместно с условием R = R' = R" приводят к тому, что экспоненциальные функции становятся равными единице. Сумма в (7.23) в соответствии с этим остается конечной, если удовлетворяются условия (7.24) или (7.25). Закон сохранения энергии в переходе выражается в требовании, чтобы частоты были связаны соотношением

со (f) -К о> (f') = а> (ГО (7.26)

или сходным уравнением.

Если волновые векторы удовлетворяют условию (7.24), то вероятность перехода будет конечной; однако такие процессы не должны приводить к наличию теплового ропроти-вления, так как волновой вектор при столкновении сохраняется; таким образом, радиационный перенос энергии через решетку не предотвращается. Если волновые векторы удовлетворяют условию (7.25), то волны рассеиваются; такого рода переходы называются процессами переброса *); они приводят к местному накоплению энергии и создают градиент температуры.

Таковы основы теории теплопроводности в кристаллических твердых телах. Матричные элементы, вычисленные по (7.26), используются для определения вероятностей перехода

') Процессы переброса получили как в английской, так и в немецкой и французской литературе наименование Umklapp-npo-цессов (или U-процессов), заимствованное из немецкой статьи Пайерлса [55], где это понятие введено впервые. — Прим, перев. СТАТИСТИЧЕСКАЯ КВАНТОВАЯ МЕХАНИКА. ОБЩАЯ ТЕОРИЯ 81

в трехфононных столкновениях. Если обозначить число фононов в равновесном состоянии через

?o(f)= e-w(t)/*r_! • то неравновесное распределение определяется в виде

f (0 = ?o(f) О+«).

где V — неизвестная функция от f. В случае стационарного градиента температуры эта функция должна удовлетворять кинетическому уравнению, подобному (3.15):

?-Sb J и ^««и-

— В [г/ (f'") + V (F) — V (f)]} dr. (7.27)

В этом уравнении коэффициенты А и В зависят от трех волновых векторов и соответствующих частот и полностью определяются с помощью теории возмущений. Величина R рассматривается как непрерывная переменная, поскольку градиент температуры определяется только в пределах таких областей, которые велики по сравнению с периодом кристаллической решетки. Тройка волновых векторов соответствует процессам переброса.

Решения этого уравнения еще не получены. Пока еще невозможно вычислить количественно теплопроводность кристаллов, причем математические трудности в решении уравнения (7.27) не являются единственным препятствием к этому. С помощью функции распределения q(I) коэффициенты переноса можно получить только посредством уравнения (1.13), к которому эта функция непосредственно не применима.

Однако теория дает возможность получить полуколичественные результаты, которые находятся в соответствии с экспериментом. Найдено, что при высоких температурах коэффициент теплопроводности пропорционален 1 /Т. Это очень хорошо согласуется с теоретическим результатом, вытекающим из температурной зависимости коэффициентов уравнения (7.27). Когда температура снижается, вероятность

6 Зек. 1189. 82

ГЛАВА III

процессов переброса заметно убывает и роль этих процессов в образовании теплового сопротивления кристаллов при низких температурах стремится к нулю. Приобретают значение другие процессы, как, например, рассеяние фононов на дефектах решетки или границах зерен; и здесь снова экспериментальные результаты согласуются с выводами теории.

Теория явлений переноса в кристаллах и в классических жидкостях в настоящее время еще несовершенна по ряду причин. В классической жидкости оказывается трудным точно установить те микрофизические случайные процессы, от которых зависит необратимость; но функции молекулярного распределения и их оценка находятся в наших руках. В кристаллах подробные сведения об элементарных случайных процессах недостаточны для вывода соответствующих функций распределения.

К сожалению, мы мало что можем сказать о квантовой теории жидкого состояния. Экспериментальные исследования жидкого гелия дают обширные данные, интерпретация которых в настоящее время проводится почти целиком на основе модельных представлений, не связанных с какой-либо фундаментальной теорией. Попытки вывести выражения для распределения энергетических уровней и термодинамических параметров ведутся, но пока лишь с ограниченным успехом. Однако в этом отношении имеются обнадеживающие перспективы.

Обычно принимается, что нижние возбужденные состояния жидкого гелия должны рассматриваться как фононный газ, не отличающийся от состояний кристаллических решеток. Эта точка зрения подтверждается измерениями теплоемкости, которая оказалась пропорциональной T3 при температуре ниже 0,6° К- Однако в жидкостях фононы не могут рассматриваться с помощью линейных преобразований координат атомов. Отдельные колебания можно определить только как пространственные компоненты Фурье в разложении плотности. Несмотря на эту трудность, многие авторы достигли некоторых успехов в определении вклада фононных переменных в функцию Гамильтона и в уравнения движения.
Предыдущая << 1 .. 17 18 19 20 21 22 < 23 > 24 25 26 27 28 29 .. 38 >> Следующая
Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed