Научная литература
booksshare.net -> Добавить материал -> Физика -> Бутиков Е.И. -> "Физика для поступающих в вузы" -> 189

Физика для поступающих в вузы - Бутиков Е.И.

Бутиков Е.И., Быков А.А., Кондратьев А.С. Физика для поступающих в вузы — Наука, 1982. — 610 c.
Скачать (прямая ссылка): fizikadlyapostupaushih1982.pdf
Предыдущая << 1 .. 183 184 185 186 187 188 < 189 > 190 191 192 193 194 195 .. 217 >> Следующая

538

ЗАКОНЫ МИКРОМИРА

мешала нашим рассуждениям и не приводила к логическим противоречиям. Нам только нужно было выбрать, на волновом или корпускулярном языке вести рассмотрение, и последовательно придерживаться выбранного способа описания. Противоречие возникает только тогда, когда мы пытаемся составить общее представление о свете. Действительно, соотношение ?=/iv или p—hv/c связывает

Рис. 3.1. Дифракция света на двух щелях.

волновые и корпускулярные свойства фотона: правые части содержат величину v, определяемую из интерференционных явлений, а левые части, Е й р, характеризуют фотон как частицу. Но именно эти-то свойства света и не могут быть логически непротиворечиво объяснены классической физикой, ибо с точки зрения классической физики понятия волны и частицы являются взаимоисключающими.

Для иллюстрации возникающих логических трудностей, а также для демонстрации того, как они преодолеваются квантовой теорией, рассмотрим подробнее уже упоминавшийся выше простой дифракционный опыт, схематически представленный на рис. 3.1. Источник света S освещает экран А, в котором прорезаны две щели. Расстояние от Л до В велико по сравнению с расстоянием d между щелями, которое в свою очередь много больше длины световой волны. На светочувствительном экраце В возникает дифракционная картина, причем в местах дифракционных максимумов вырывается наибольшее число фотоэлектронов. Как и в разобранном выше опыте с дифракцией на одной щели, эксперимент показывает, что дифракционная картина
$ 8. КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ

539

сохранится и в том случае, если в каждый момент времени между источником и экраном в среднем будет находиться только один фотон. Распределение множества фотонов, попавших на- экран за достаточно большой промежуток времени, по-прежнему будет определяться классической картиной дифракции qt двух щелей, хотя при вырывании фотоэлектронов из экрана В фотоны ведут себя как частицы, каждая из которых выбивает электрон в определенном месте экрана.

Если закрыть одну из щелей, то интерференционные полосы пропадают — распределение интенсивности на экране становится таким же, как при дифракции яа одной щели, и при очень узкой щели становится практически равномерным. Поэтому мы вынуждены считать, что при движении от источника света через щели до экрана В излучение ведет себя как волна. Если попытаться объяснить результаты опыта с помощью представления о свете как о частицах, то нужно считать, что каждый фотон, по-видимому, проходит только через одну из щелей. Но тогда, в рамках чисто корпускулярных представлений, можно было бы спросить: каким образом поток независимых фотонов, каждый из которых проходит только через одну из щелей, может образовать дифракционную картину, наблюдаемую лишь при наличии обеих щелей? Или, другими словами, каким образом щель, через которую фотон не проходит, не позволяет ему попасть на те места экрана, куда он мог бы попасть, если бы эта щель была закрыта?

В этой формулировке вопроса предполагается, что фотон действительно проходит через одну из щелей. С точки зрения классической теории это допущение является естественным, ибо предполагается, что’в любой момент времени фотон (как. и любая другая частица) имеет определенные координаты, доступные измерению. Современная квантовая теория отказывается от этого допущения, утверждая, что говорить о положении фотона имеет смысл лишь в том случае, если при постановке опыта мы позаботимся об определении его координаты. Значит, если мы хотим считать, что каждый фотон действительно, подобно частице, проходит только через одну из щелей, мы должны поставить какой-либо измерительный лрибор, который бы фиксировал нам факт прохождения фотона через определенную щель. Если мы попробуем с помощью специальных счетчиков С и О
640

8АКОНЫ МИКРОМИРА

фиксировать, через какое отверстие проходит каждый фотон, то обнаружим, что дифракционная картина на экране В размоется. Попробуем объяснить этот экспериментальный факт, используя соотношения неопределенностей Гейзенберга. Выясним, можно ли в принципе наблюдать на экране В интерференционные полосы, если точно определять, через какие отверстия проходят фотоны.

Если с помощью счетчиков, установленных непосредственно вблизи отверстий в экране А, мы будем определять, через какое именно отверстие проходит каждый фотон, то тем самым мы действительно заставим свет проявлять корпускулярные свойства, ибо только для частицы имеет смысл утверждение, что она прошла через определенное отверстие, для волны вопрос о том, через какое отверстие она прошла (разумеется, если открыты оба), вообще лишен смысла.

Для того чтобы уверенно судить о том, через какое отверстие прошел фотон, нужно с помощью счетчиков определять его координату х с достаточной точностью, так чтобы ошибка Ах в определении координаты фотона была бы меньше половины расстояния между отверстиями:

Лх <~. (3.1)

Однако не следует стремиться определять я-координату фотона слишком точно, так как в силу соотношения неопределенности Гейзенберга
Предыдущая << 1 .. 183 184 185 186 187 188 < 189 > 190 191 192 193 194 195 .. 217 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed