Научная литература
booksshare.net -> Добавить материал -> Химия -> Ашмарин И.П. -> "Нейрохимия " -> 19

Нейрохимия - Ашмарин И.П.

Ашмарин И.П., Антипенко А.Е. Нейрохимия — РАМН, 1996. — 470 c.
ISBN 5-900760-02-2
Скачать (прямая ссылка): neyrohimiya1996.djvu
Предыдущая << 1 .. 13 14 15 16 17 18 < 19 > 20 21 22 23 24 25 .. 188 >> Следующая

Дезаминирование глутамина катализируется глутаминазой (КФ 3.5.1.2), ферментом, наиболее активным в нейронах, где он локализован в митохондриях. Следует отметить, что активность этого фермента в головном мозге невелика; продукты реакции — глутаминовая кислота и аммоний — тормозят активность фермента.
Предполагается участие этого фермента в мембранном транспорте глутамата. Известно, что биологические мембраны более проницаемы для глутамина, чем для глутамата, и глутаминаза может участвовать в превращении глутамина крови во внутриклеточный глутамат. Глутаминаза играет важную роль также в регуляции содержания глутамата в нервных окончаниях. Тот факт, что глутаминсинтетаза локализована в основном в глиальных клетках, а глутаминаза наиболее активна в нейронах, а также то, что глутамин оказался главным предшественником глутамата и ГАМК, выполняющих трансмиттерную функцию, послужил основанием для концепции о существовании глута-
47
минового цикла. Глутамат, поглощаясь глиальными клетками, превращается в глутамин в синтетазной реакции, последний входит в нейроны, образуя там глутаминовую кислоту. Таким образом, глутамин служит глиально-нейрональным транспортером глутамата.
Другой важной функцией глутамата является его участие в синтезе белков и биологически активных пептидов. Глутамат и глутамин составляют вместе от 8 до 10% общих аминокислотных остатков в гидролизате белков мозга. В частности, два хорошо изученных мозгоспецифичных белка — S-100 и 14-3-2 — содержат особенно высокую долю глутаминовой кислоты. Глутамат является также составной частью ряда малых и средних регуляторных пептидов мозга. Это прежде всего глутатион и ряд у-глутамильных дипептидов. Некоторые нейропептиды содержат циклическое производное глутамата — пироглугамат в качестве N-терминального остатка, который предохраняет эти пептиды от протеолиза. К таким пептидам относятся люлибе-рин, тнролиберин, нейротензин, бомбезин и др. (см. гл.9).
Введение глутамата в различные районы мозга приводит либо к судорожной активности, либо к распространяющейся депрессии, даже если количество его мало по сравнению с нормальной концентрацией глутамата в мозге. Глутамин не вызывает такого эффекта. При внутривенном введении глутамат может вызвать гибель клеток в определенных районах ЦНС, особенно вокруг желудочков мозга, где менее развит гематоэнцефаличе-ский барьер. Нейроны незрелых животных, у которых еще отсутствует высокоразвитый гематоэнцефалический барьер, также очень чувствительны к глутамату. Оральное введение больших количеств глутамата не действует на ЦНС большинства людей, а соли глутамата широко используются в качестве пищевой приправы. Однако у некоторых лиц обнаруживается повышенная чувствительность к глутамату натрия, он вызывает сенсорные и моторные нарушения, включая ощущение жжения, напряжение лица, боль в грудной клетке и головную боль. Эти симптомы известны как “синдром китайских ресторанов”, так как глутамат натрия широко используется в китайской кухне. Многие аналоги глутамата токсичны.
Остановимся на некоторых сторонах нейротрансмиттерной функции глутамата (более подробно она рассматривается в гл. 7 и 8) . Для того чтобы глутамат эффективно функционировал в качестве нейротрансмиттера, его модальная внеклеточная концентрация должна быть ниже той, которая вызывает деполяризацию мембран. В действительности она колеблется от 1 до 10
48
мкМ; такая низкая внеклеточная концентрация глутамата поддерживается активным транспортом в нейроны и особенно в глиальные клетки.
В процессе выхода глутамата в синаптическую щель концентрация его там значительно повышается — до 1 мМ. Последующий обратный захват глутамата нейронами и астроцитами осуществляется с участием Na-зэвисимых высокоаффинных переносчиков, из синаптической щели глутамат удаляется в основном путем захвата астроцитами. Для функционирования глутамата в качестве нейротрансмиттера необходимо постоянное пополнение его пула в нервных окончаниях.
Предшественниками трансмиттерного пула глутамата могут быть глюкоза и а-кетоглутарат. Глутамат может также образовываться из орнитина и аргинина (через глутамат-полуальде-гид). Но основным источником нейротрансмиттерного глута-матного пула, по данным изотопных исследований, оказался глутамин, который синтезируется в основном в астроцитах, где локализована глутаминсинтетаза. Далее он легко транспортируется через мембрану астроцитов и с помощью активных переносчиков достигает нервных окончаний.
2.2.2. N-Ацетиласпарагииовая кислота
Одним из доминирующих компонентов пула свободных аминокислот мозга является N-ацетиласпарагиновая кислота (АцА)
СООН-СН2-СН-СООН
I
NH-CO-CH,
Ее концентрация у большинства видов животных в два раза превышает таковую аспарагиновой кислоты. В ненейрональной ткани обнаружены только следы АцА. Она находится в более высокой концентрации в сером веществе по сравнению с белим, представлена также в периферической нервной системе, в сетчатке. Ее концентрация низка при рождении и повышается в процессе развития животного.
Предыдущая << 1 .. 13 14 15 16 17 18 < 19 > 20 21 22 23 24 25 .. 188 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed