Научная литература
booksshare.net -> Добавить материал -> Химия -> Ашмарин И.П. -> "Нейрохимия " -> 25

Нейрохимия - Ашмарин И.П.

Ашмарин И.П., Антипенко А.Е. Нейрохимия — РАМН, 1996. — 470 c.
ISBN 5-900760-02-2
Скачать (прямая ссылка): neyrohimiya1996.djvu
Предыдущая << 1 .. 19 20 21 22 23 24 < 25 > 26 27 28 29 30 31 .. 188 >> Следующая

Главный путь метаболизма фенилаланина в целом организме — его гидроксилирование до тирозина с участием фермента фенилаланин-4-гидроксилазы (КФ 1.99.1.2) — не обнаружен в мозге. Другие энзимы, присутствующие в мозге, могут катализировать гидроксилирование лишь небольшой части фенилаланина. Печеночная система гидроксилирования фенилаланина тщательно изучена, так как ее нарушение ведет к самому распространенному и тяжелому заболеванию, связанному с метаболизмом аминокислот, — фенилкетонурии. Система состоит из самой гидроксилазы, неконъюгированного птеридинового кофактора и пиридин-связанной редуктазы для рециклизирова-ния птеридинового кофактора. Гидроксилаза — сложный железосодержащий белок — является классической монооксигена-зой, требующей молекулярного кислорода в качестве окислителя, и L-эритротетрагидробиоптерина в качестве восстановителя. Второй энзим системы — дегидроптеринредуктаза — катализирует рециклизацию окисленного кофактора, используя НАДФН как источник электронов.
Фенилкетонурия — это следствие генетически обусловленного отсутствия фенилгидроксилазной активности в печени, она проявляется аминоацидурией с нарушениями нервной системы. Уровень фенилаланина в крови таких больных возрастает в несколько сотен раз по сравнению с нормой.
Заболевание сопровождается серьезными неврологическими нарушениями, включая конвульсии, тремор, умственные дефекты, необратимое и глубокое недоразвитие. Большинство больных детей гиперактивны и агрессивны, многие из них являются микроцефалами со слабой пигментацией кожи, волос, глаз. Из биохимических нарушений характерным является генерализованный дефицит миелина, сопровождающийся снижением уровней холестерина, цереброзидов, изменением отношения насыщенных и ненасыщенных жирных кислот.
64
Стандартная терапия фенилкетонурии — снижение доли фенилаланина в диете.
Тирозин — один из важнейших источников нейромедиаторов
— катехоламинов. Превращение тирозина в катехоламины является главным путем метаболизма тирозина в мозге и надпочечниках. Первая ступень, катализируемая тирозин-3-гидрокси-лазой (КФ 1.14.16.2), лимитирует скорость всего процесса. Энзим является оксидазой со смешанными функциями, требующей кислорода, восстановленного птеридина и Fe2+. Под действием фермента тирозин превращается в 3,4-дигидроксифени-лаланин (ДОФА) . Активность его подавляется катехоламинами. Естественно, этот энзим служит надежным цитохимическим маркером нейронов, способных синтезировать катехоламины.
Декарбоксилирование ДОФА до дофамина выполняется ДОФА-декарбоксилазой (КФ 4.1.1.26), которая требует в качестве кофактора пиридоксальфосфат. В мозге энзим неспецифичен, действует на широкий спектр ароматических аминокислот, включая 5-гидрокситриптофан.
Дофамин-p-гидроксилаза (КФ 1.14.17.1), необходимая для его превращения в норадреналин, также присутствует в мозге. Показана необходимость молекулярного кислорода и аскорбиновой кислоты для его действия. Энзим содержит ионы меди и стимулируется фумаровой кислотой. Он неспецифичен и катализирует гидроксилирование боковых цепей большого количества p-фенилэтиламинпроизводных; в частности, тирамин является лучшим субстратом для энзима, чем дофамин.
Основной путь деградации тирозина в организме млекопитающих — через р-гидроксифенилпируват, гомогентизиновую кислоту и расщепление кольца — не встречается в головном мозге. В мозге присутствует Ь-тирозин-2-оксоглутаратами-нотрансфераза (КФ 2.6.1.5.), которая осуществляет активное переаминирование тирозина в нейрональной ткани. Тирозин мозга является также субстратом для неспецифической декарбоксилазы ароматических аминокислот.
Хотя известен ряд нарушений во всех путях деградации тирозина, ни один из них не вызывает тяжелых неврологических повреждений.
Гистидин не синтезируется в головном мозге, но он активно транспортируется через гематоэнцефалический барьер. В мозге гистидин может декарбоксилироваться, образуя гистамин — важный нейромедиатор и нейромодулятор. Декарбоксилирование гистидина могут выполнять два энзима. Первый из них —
65
специфическая гистидин-декарбоксилаза (КФ 4.1.1.22,), энзим, требующий пиридоксальфосфат в качестве кофактора. Он очень активен в ряде периферических нервов и в симпатических ганглиях. В то же время в головном и спинном мозге активность его мала; К^ для гистидина в нормальных условиях — порядка 410-4 м! Фермент индуцируется при стрессе.
Вторым энзимом, который осуществляет декарбоксилирова-ние гистидина, является неспецифическая декарбоксилаза ароматических аминокислот (КФ 4.1.1.28), действующая на ДОФА, 5-гидрокситриптофан, а также на гистидин. Представлено большое количество доказательств, что именно этот энзим является ответственным за декарбоксилирование гистидина в ЦНС.
Разрушение гистамина в целом организме происходит в основном при участии гистаминазы (КФ 1.4.3.6.), но этот фермент отсутствует в мозге. Главный путь катаболизма гистамина в мозге — метилирование в 4-м положении с использованием S-аденозилметионина в качестве донора метильной группы при участии специфического энзима гистамин-метилтрансферазы (КФ 2.1.1.8.). При подавлении этого энзима уровень гистамина в мозге сильно возрастает. Образованный метилгистамин затем окисляется до соответствующего альдегида и до метилимидазо-луксусной кислоты, которая экскретируется.
Предыдущая << 1 .. 19 20 21 22 23 24 < 25 > 26 27 28 29 30 31 .. 188 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed