Научная литература
booksshare.net -> Добавить материал -> Биология -> Иваницкий Г.Р. -> "Математическая биофизика клетки" -> 2

Математическая биофизика клетки - Иваницкий Г.Р.

Иваницкий Г.Р., Кринский В.И., Сельков Е.Е. Математическая биофизика клетки — Наука, 1978. — 312 c.
Скачать (прямая ссылка): matematicheskayabio1978.djvu
Предыдущая << 1 < 2 > 3 4 5 6 7 8 .. 121 >> Следующая

Однако в клетке имеются биохимические процессы, протекающие в зависимости от условий внутри или внеклеточной среды либо в анаболическом, либо в катаболическом направлении. Такие процессы, называемые амфиболическими, в принципе не могут быть эффективно организованы в пространстве, так как ферменты, катализирующие противоположно направленные процессы (например, ферменты, синтезирующие и расщепляющие гликоген), должны находиться в одном и том же компартменте. Для таких биохимических процессов единственно возможной формой или, по крайней мере, основной формой организации является временная организация, т. е. определенный (как правило, периодический) порядок работы несовместимых биохимических процессов во времени.
Пытаясь ответить на вопрос, какова организация работы клетки, целесообразно поставить ряд более простых вопросов.
1. Каким образом регулируются сложные открытые полифер-ментные системы в бесструктурной гомогенной среде?
2. Какими свойствами обладают клеточные мембраны, разделяющие полиферментные системы и клетки друг от друга?
3. К каким следствиям приводит пространственная распределенность биохимических, в частности возбудимых мембранных систем?
4. Каким образом можно получить трехмерные реконструкции внутриклеточных структур по данным оптической или электронной микроскопии, дающим практически лишь двумерные сечения или проекции?
Теоретическое решение этих вопросов и составляет основную цель нашей книги.
Материал, посвященный математическому моделированию биохимических систем, содержится в части 1, состоящей из трех глав.
Глава 1 посвящена выводу уравнений, описывающих зависимость квазистационарной (или так называемой начальной) скорости ферментативной реакции от концентрации реактантов (субстратов, продуктов, модификаторов и т. п.). Основное внимание здесь уделено выводу и анализу уравнений, описывающих регуляторные ферменты. Такие ферменты имеют олигомерную (субъеди-ничную) структуру, включающую несколько активных и регуляторных (аллостерических) центров. До сих пор теоретическое рассмотрение кинетики действия таких ферментов не выходило за рамки простых моделей (модель Моно — Уаймена — Шанжё, модель Кошлэнда, модели Фридена — Курганова), описывающих моносубстратную необратимую реакцию. Между тем подавляющее большинство биохимических реакций, катализируемых регуляторными олигомерными ферментами, представляют собой многосубстратные, часто легкообратимые реакции. Поэтому в главе 1 приводится вывод уравнений, описывающих скорости ре-акций, имеющих произвольное число реактантов. Эти уравнения, являющиеся существенным обобщением модели Моно, Уаймена и Шанжё и модели Фридена — Курганова, могут быть использованы для описания очень широкого класса биохимических реакций.
Глава 2 посвящена описанию динамических свойств открытых ферментативных реакций. Описанию предпослан вводный раздел 2.1, кратко знакомящий с основными методами качественного исследования математических моделей, используемых в этой главе и в некоторых главах части 2. Хотя в последние годы математические исследования динамики проточных химических и биохимических реакций довольно популярны, очень мало сделано для того, чтобы сформулировать достаточно общую теорию таких реакций. Поэтому часто публикуются работы, результаты которых можно было бы заранее предсказать на основании того, что многие кинетические модели открытых (био)химических и мембранных систем математически топологически эквивалентны. Целесообразно под-
робно изучить лишь одну из множества эквивалентных моделей, а затем ограничиваться установлением принадлежности новой, еще неизученной модели к некоторому классу эквивалентных моделей. Если удается доказать такую принадлежность, то все свойства наиболее детально изученной модели, которую можно считать эталонной моделью данного класса, автоматически переносятся на новую, еще неизученную модель. С учетом этих соображений в разделах 2.2 и 2.3 проведено весьма детальное исследование математических моделей двух типов открытых ферментативных реакций — обратимой реакции с субстратным угнетением и необратимой двухсубстратной реакции с субстратным угнетением. Обе эти реакции, несмотря на несходство кинетических схем, математически эквивалентны: они имеют одинаковое строение параметрических и фазовых портретов. Эти модели можно рассматривать как эталонные модели широкого класса (био)химических систем — систем, квазистационарные характеристики (входные или выходные характеристики, главные изоклины) которых имеют гистерезис. В частности, в разделах 2.4 и 2.6 показано, что различные варианты моделей открытых реакций эквивалентны моделям, разобранным в разделах 2.2 и 2.3.
Суммированные в разделе 2.5 основные результаты показывают, каким богатством динамического поведения обладают даже очень простые ферментативные реакции. При подходящих условиях они способны генерировать устойчивые или неустойчивые автоколебания и однократные спайкообразные импульсы стандартной формы (после действия соответствующего сверхпорогового возмущения); способны переходить из одного устойчивого режима в другой, причем альтернативные устойчивые режимы могут иметь как колебательный, так и неколебательный характер, а период колебаний в открытых биохимических системах из-за эффекта депонирования (раздел 2.7) может быть очень большим — порядка суток.
Предыдущая << 1 < 2 > 3 4 5 6 7 8 .. 121 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed