Научная литература
booksshare.net -> Добавить материал -> Биология -> Иваницкий Г.Р. -> "Математическая биофизика клетки" -> 4

Математическая биофизика клетки - Иваницкий Г.Р.

Иваницкий Г.Р., Кринский В.И., Сельков Е.Е. Математическая биофизика клетки — Наука, 1978. — 312 c.
Скачать (прямая ссылка): matematicheskayabio1978.djvu
Предыдущая << 1 .. 2 3 < 4 > 5 6 7 8 9 10 .. 121 >> Следующая

Особенно важно, что использование качественных методов позволяет значительно упростить экспериментальную работу при исследовании мембран. Этому вопросу посвящена глава 5, где излагается применение качественных методов для анализа записей ионных токов при фиксации потенциала. Качественные методы позволяют легко и быстро определить в экспериментах с фиксацией потенциала, за счет изменения каких компонент мембранного тока происходит изменение тех или иных электрофизиологических характеристик. Особенно большое значение эти методы могут иметь при поиске биологически активных веществ с заданными свойствами.
В главе 5 также описываются разработанные методы построения уравнений типа Ван дер Поля для исследуемых мембран непосредственно по записям ионного тока при фиксации потенциала. Такие модели были построены для ряда объектов: волокна предсердия лягушки, волокна Пуркинье сердца теплокровного, волокна поперечнополосатой мышцы, гигантского аксона кальмара, перехвата Ранвье, нейрона улитки.
Часть 3 книги посвящена волнам в возбудимых (активных) средах, в частности в возбудимых мембранах. Волны здесь распространяются без затухания, заново генерируясь каждой точкой мембраны. Волны возбуждения являются сильно нелинейными волнами; при столкновении они гаснут, отражения от границ среды отсутствуют. Эти свойства обеспечивают их важное отличие от аддитивных волн (электромагнитных, звуковых), хорошо изученных в математической физике.
Наибольшее внимание уделяется процессам возникновения волн, так называемым автоволновым процессам, аналогичным автоколебательным процессам в сосредоточенных системах. Авто-волновые процессы лежат в основе функционирования самых различных активных сред — распределенных экологических, электрохимических и химических систем, физических систем с инверсной населенностью (рабочие тела лазеров), различных технических устройств — цепочек мультивибраторов, линий из туннельных диодов и нейристоров, а также распределенных систем, образованных возбудимыми биологическими мембранами, нейронных структур, нервных и мышечных волокон, сердечной ткани.
В Институте биологической физики АН СССР была предсказана возможность возникновения источников спиральных волн и источников периодических концентрических волн в неоднородных активных средах, состоящих из неавтоколебательиых элементов; теоретически изучены свойства этих источников волн; здесь же были выполнены первые эксперименты по наблюдению этих источников волн в распределенной химической активной среде. Результаты, полученные при анализе автоволновых процессов в возбудимых средах, нашли широкое применение для исследования концентрационных волн в химических системах, а также для анализа механизмов аритмий сердечной мышцы.
Главы 6и7 посвящены исследованию новых типов источников волн, специфических для возбудимых сред — вращающейся спиральной волны, так называемого ревербератора (глава 6), и источ-. ника эха (глава 7).
В главе 8 рассматриваются процессы, происходящие в возбудимых средах при взаимодействии источников волн, и их приложение к анализу сердечных аритмий.
В главе 6 рассмотрены процессы, приводящие к возникновению источников волн в возбудимых средах. Показано, что распро-
странение волн в возбудимых средах с размерностью п > 1 качественно мало отличается от распространения импульса в волокне, если среда однородна, и рассматриваются «естественные» начальные условия (соответствующие состоянию покоя элементов среды). Качественно новые режимы возникают в неоднородных средах, где могут происходить разрывы волн. При эволюции разрыва его края скручиваются, что приводит к формированию вращающихся спиральных волн. Большое число спиральных волн создает картину, внешне похожую на турбулентность.
Детально изучены свойства и поведение источников спиральных волн (ревербераторов). Обнаружено, что в неоднородных средах эти источники волн имеют конечное время жизни; они исчезают в результате того же процесса образования разрывов волн, который привел к их возникновению. Время жизни спиральной волны оказывается тем больше, чем больше длительность возбужденного состояния элементов среды и чем меньше степень неоднородности среды; в однородных средах ревербератор устойчив и имеет неограниченное время жизни. Однако в однородных средах распространение волн не приводит к формированию ревербераторов.
Одно из важнейших свойств источников волн — их способность размножаться в неоднородных средах. Размножение источников возможно в результате того, что волны, посылаемые ими, в неоднородной среде разрываются (так как эти источники посылают волны с максимальной частотой, которую способна пропустить данная среда); из разрывов возникают новые источники волн. Изучены условия, при которых возможно размножение. Отмечены аналогии с цепными или автокаталитическими реакциями: тип режима в среде зависит от соотношения скоростей двух противоположных процессов — размножения источников волн и их исчезновения. Если скорость размножения источников волн превышает скорость их исчезновения, в среде возникает нерегулярный режим, связанный с большим числом источников волн, работающих с разными частотами, исчезающими в одних местах и появляющимися в других. Ставится задача о нахождении критических значений параметров возбудимой среды, при превышении которых в среде становятся возможными нерегулярные режимы. Полученные результаты используются для создания нового подхода к поиску сердечных противоаритмических лекарственных средств.
Предыдущая << 1 .. 2 3 < 4 > 5 6 7 8 9 10 .. 121 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed