Научная литература
booksshare.net -> Добавить материал -> Биология -> Иваницкий Г.Р. -> "Математическая биофизика клетки" -> 6

Математическая биофизика клетки - Иваницкий Г.Р.

Иваницкий Г.Р., Кринский В.И., Сельков Е.Е. Математическая биофизика клетки — Наука, 1978. — 312 c.
Скачать (прямая ссылка): matematicheskayabio1978.djvu
Предыдущая << 1 .. 2 3 4 5 < 6 > 7 8 9 10 11 12 .. 121 >> Следующая

Механизм такой слабой помехозащищенности очевиден. Параметры объемной клеточной структуры вычисляются как разности близких и больших величин, измеряемых на сечениях или
проекциях. Чтобы уменьшить ошибку, необходимо увеличивать точность и статистику измерений при определении параметров клетки, описываемых интегральным выражением.
Однако существует еще один путь борьбы с некорректностью обратных задач. Это моделирование путем использования априорной дополнительной информации о структуре объекта. Если что либо известно об организации структуры подынтегральной функции, то можно попытаться найти решение, перебирая варианты подынтегральной функции и вычисляя каждый раз интеграл, значение которого сравнивается с измеренным до их совпадения. Такая прямая схема вычислений путем моделирования клеточной структуры более помехоустойчива, но требует предварительной, хотя бы приближенной, информации о характере этой структуры. Одному из простейших вариантов такого моделирования клеточных структур посвящен раздел 9.5.
Опыт показывает, что при опознавании объектов их контур — одна из наиболее информативных частей изображения. Основная математическая проблема, возникающая при машинном анализе изображений клеток и их частей, состоит в получении исходного словаря, в терминах которого можно моделировать строение объекта, и набора правил машинного конструирования из его слов трехмерной структуры клеток.
В качестве примера рассмотрен словарь, в основе которого лежит контурное описание структурных клеточных элементов на срезах или проекциях.
Целью анализа контура является вычисление геометрических параметров структурных клеточных элементов или нахождение характерных точек, позволяющих определить их форму. Эти вопросы освещены в главе 10.
Глава 11 посвящена анализу биологических клеточных структур, описываемых одномерными функциями.
Для расшифровывания цепи нуклеиновых кислот длиной в несколько сот нуклеотидов необходима разработка алгоритмов, позволяющих восстанавливать первичную структуру по отдельным перекрывающимся блокам разорванной цепи. «Интуитивного» перебора вариантов для определения длинных последовательностей оказывается недостаточно. Математическая постановка этой задачи может быть сформулирована в терминах восстановления неизвестного слова по известному набору его фрагментов, полученных определенным способом. В разделе 11.5 даны рекомендации для планирования биохимического эксперимента по расшифровке первичной последовательности нуклеотидов.
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ * БИОХИМИЧЕСКИХ СИСТЕМ
Глава первая
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ НЕПРОТОЧНЫХ ФЕРМЕНТАТИВНЫХ РЕАКЦИЙ
1.1. Два направления в моделировании ферментативных реакций
Ферментативные реакции давно являются излюбленными объектами математического моделирования в различных областях биохимии, биофизики и теоретической биологии. Существуют два подхода в математическом моделировании ферментативных реакций, отличающиеся друг от друга по целям и требованиям, предъявляемым к моделям.
Основной целью одного подхода служит выяснение механизма действия отдельных ферментов — определение порядка взаимодействия реактантов с ферментом, нахождение численных значений параметров, характеризующих отдельные элементарные стадии, из которых складывается ферментативная реакция, и т. д. При таком подходе ферменты или катализируемые ими реакции рассматриваются изолированно друг от друга без учета взаимодействий, существующих между ними в живой клетке. Второй подход преследует совсем иную цель — выяснение свойств полиферментных систем. При этом именно взаимодействия между ферментативными реакциями являются основным объектом моделирования, а моделирование отдельных реакций, составляющих исследуемую полиферментную систему, проводится лишь как подготовительный этап в построении модели полиферментной системы.
Упрощенно эти различия можно представить следующим образом. Для изучения механизма действия одиночного фермента обычно нужна детальная модель, описывающая по возможности все элементарные процессы, из которых складывается ферментативный катализ, тогда как для изучения закономерностей работы полиферментных систем нужны максимально простые модели отдельных реакций, из которых должны быть исключены все детали, не представляющие интереса для понимания работы всей полифер-ментцой системы.
Заметив какую-то особенность в кинетике действия изучаемого фермента, исследователь, использующий первый подход в модели-
ровании ферментативных реакций, обычно рассматривает ее как источник зашифрованной информации о механизме действия фермента и стремится найти теоретическое объяснение этой особенности в терминах процессов более элементарных, чем ферментативная реакция. С этой целью он формулирует гипотетический механизм действия фермента, представляющий собой кинетическую модель реакции. Затем по кинетической модели он выводит математическую модель и сравнивает ее с экспериментальными данными. Обычно после такого сравнения в кинетическую модель приходится вносить изменения для того, чтобы устранить расхождения между свойствами ферментативной реакции, предсказываемыми математической моделью, и свойствами, наблюдаемыми в эксперименте. Этот итерационный процесс последовательного уточнения кинетической и математической моделей продолжается до тех пор, пока не будет достигнута желаемая точность теоретического описания экспериментальных данных. Так как одну и ту же кривую могут описывать различные математические модели, а одной и той же математической модели могут соответствовать различные кинетические модели, то исследователь, добившийся хорошего согласия между математической моделью и экспериментом, никогда не уверен в том, что использованная им кинетическая модель единственно верная.
Предыдущая << 1 .. 2 3 4 5 < 6 > 7 8 9 10 11 12 .. 121 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed