Научная литература
booksshare.net -> Добавить материал -> Биология -> Иваницкий Г.Р. -> "Математическая биофизика клетки" -> 8

Математическая биофизика клетки - Иваницкий Г.Р.

Иваницкий Г.Р., Кринский В.И., Сельков Е.Е. Математическая биофизика клетки — Наука, 1978. — 312 c.
Скачать (прямая ссылка): matematicheskayabio1978.djvu
Предыдущая << 1 .. 2 3 4 5 6 7 < 8 > 9 10 11 12 13 14 .. 121 >> Следующая

стабильные в анаэробных условиях кристаллы фермент-субстратного комплекса оксидазы /^-аминокислот (КФ 1.4.3.3). В настоящее время существует множество различных экспериментальных доказательств реальности существования фермент-субстратных комплексов в ферментативных реакциях [4, с. 177; 6, с. 203].
В 1930 г. Холдейн [20], распространив теоретические представления о фермент-субстратном комплексе [12—15] на случай двухсубстратных и обратимых реакций, постулировал существование различных фермент-субстратных, фермент-продуктных и фермент-ингибиторных промежуточных комплексов. Так, для объяснения механизма двухсубстратной реакции
Е
Si + Sa---» Продукты (1.5)
Холдейну пришлось ввести предположение о существовании трех различных фермент-субстратных комплексов: двух бинарных ES* и ES2 и одного тройного комплекса ESiS2, образующихся в реакциях
Sx + E^ESi, S2 + E^ES2,
Si + ES2 ^ ESxS2, S2 + ESX ^ ESiS* ( ' }
Для объяснения механизма субстратного угнетения Холдейн [20] предложил кинетическую модель
Й+1 K+I
Si+ Е^=^ ESi---------->E+S2,
<4-7>
Si + ESx^^SiESb
согласно которой активный фермент-субстратный комплекс ESi, присоединяя к себе избыточную молекулу субстрата Sb превращается в пассивный фермент-субстратный комплекс SxESi, не способный распадаться с образованием продукта S2. Используя метод квазистационарных концентраций, Холдейн получил следующее выражение для квазистационарной начальной скорости
Б
v реакции Si------> S2, описываемой кинетической моделью (1.7):
________Ш!___________ (1.8)
/ [Si]\ ’ к '
\ [S,]^l -I---^rj
где V — А,-+2е0 — максимальная скорость реакции, достигаемая только при [Si] сю и /?;->- сю, Кт = (k_i + к+2)1к+1 — константа Михаэлиса, Kt = к_3/к+3 — константа субстратного угнетения, е0 — [Е] + [ESj] + [SiESJ — полная концентрация фермента.
Явление субстратного угнетения, теоретически проанализированное Холдейном с помощью модели (1.8), было впервые обна-
ружено в 1924 г. Диксоном и Терлоу [21] при исследовании кинетики действия ксантиноксидазы (КФ 1.2.3.2). Этот фермент сильно угнетался высокими концентрациями субстрата (ксантина или гипоксантина).
После работы Холдейна [20] стало ясно, что для объяснения механизмов сложных реакций — реакций с большим числом реактантов — следует допустить, что в ходе таких реакций образуется не один, а множество различных фермент-субстратных комплексов. И действительно, по данным В. И. Иванова и М. Я. Карпейского [22], в реакции трансаминирования, катализируемойаспартатами-нотрансферазой (КФ 2.6.1.1) — ферментом, механизм действия активного центра которого изучен в настоящее время весьма детально, образуется более десяти различных форм фермент-субстратных комплексом.
Следует заметить, что экспериментальное обнаружение и идентификация всех теоретически мыслимых форм ферментных комплексов в каждой изучаемой реакции представляют собой нерешенную до сих пор проблему. Поэтому число и порядок взаимопревращений ферментных комплексов в подавляющем большинстве известных в настоящее время ферментативных реакций неясны.
Специфическое расположение атомов и атомных группировок, взаимодействующих в активном центре с молекулами реактантов, обеспечивается определенной пространственной укладкой поли-пептидных цепей фермента, характерной для данного фермента и называемой конформацией фермента [6, с. 65]. Изменения химического состава и физических характеристик среды, окружающей молекулу фермента, могут вызывать конформационные изменения — изменения взаимного расположения атомов и групп атомов в молекуле фермента. Эти конформационные изменения часто сопровождаются деформацией структуры активного центра, следствием чего может быть существенное изменение его активности и даже специфичности по отношению к реагентам.
Вещества, вызывающие изменения активности и (или) специфичности каталитических центров ферментов, называются модификаторами, регуляторами или модуляторами. Природные модификаторы ферментов, обладающие высокой специфичностью и эффективностью воздействия на фермент, называют (также регуляторами или эффекторами ферментов. Модификаторы, если они не являются участниками катализируемой ферментом реакции, в реакции не расходуются.
Различают два класса модификаторов — активаторы и ингибиторы. Молекулы активаторов, присоединяясь к ферменту, вызывают увеличение скорости катализируемой ферментом реакции или сродства фермента к субстрату, а молекулы ингибиторов — уменьшение скорости или этого сродства.
Молекулы модификаторов могут связываться как в активном центре фермента, так и в участках молекулы фермента, находящихся на значительном удалении от активного центра. Основной причиной того, что модификатор связывается в активном центре, является структурное сходство (иначе стерическое соответствие) между молекулой модификатора и субстрата. Поэтому модификаторы, присоединяющиеся к активному центру фермента, называются изостерическими.
Предыдущая << 1 .. 2 3 4 5 6 7 < 8 > 9 10 11 12 13 14 .. 121 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed