Научная литература
booksshare.net -> Добавить материал -> Биология -> Лебедев С.И. -> "Физиология растений " -> 17

Физиология растений - Лебедев С.И.

Лебедев С.И. Физиология растений — М.: Агропромиздат, 1988. — 544 c.
ISBN 5-10-000574-2
Скачать (прямая ссылка): fiziologiyarasteniy1988.djvu
Предыдущая << 1 .. 11 12 13 14 15 16 < 17 > 18 19 20 21 22 23 .. 239 >> Следующая

Наконец, в молекуле белка существуют еще электростатические взаимодействия между группами, которые несут электрические заряды.
В каждой молекуле белка, построенной из 20 различных аминокислот, общее количество аминокислотных остатков составляет сотни и даже тысячи.
Первичная структура. Каждому виду белка строго индивидуально присущи определенный состав и последовательность аминокислот в полипептидной цепи; любое звено цепи — это
¦определенная аминокислота. Последовательность аминокислотных остатков в белковой молекуле и структуру, поддерживаемую ковалентными связями, называют первичной структурой белка, Все существующие в природе белки различаются по первичной структуре. Первичная структура каждого индивидуального белка сохраняется в поколениях, т, е. закреплена генетически благодаря передаче наследственной информации.
Число возможных первичных структур молекул белка практически неограниченно, Каталитические свойства того или иного белка зависят от его первичной структуры, и для функционирования белка-катализатора необходимо определенное сочетание аминокислот.
Вторичная структура. Пространственная конфигурация (конформация) полипептидной цепи белка создается благодаря возникновению дополнительных связей — «водородных мостиков», которые образуются как в пределах одной полипептидной цепи, так и между цепями. Водородные связи возникают в результате относительно слабых связей между атомами водорода и свободной парой -электронов отрицательного элемента полипептидной цепи белка, например между водородным атомом >NH-" группы одной пептидной связи и атомами кислорода >СО-группы другой:
II
О * • •II—N
\ Глк
Н- • ¦ •(/
н
Если водородные связи образуются в пределах одной полипептидной цепи, то она закручивается в спираль; водородные связи стабилизируют спиральную конформацию полипептидной цепи. При образовании водородных мостиков между двумя пептидными цепями создаются структуры складчатого типа. Большое количество водородных связей обеспечивает высокую стабильность молекулы белка.
Третичная структура. Спиральные полипептидные цепи жестко фиксируются за счет взаимодействия боковых групп, аминокислот, приобретая специфическую для каждого белка пространственную структуру (конформацию). Это третичная структура белка. В зависимости от расположения полипептид-ных цепей форма молекул белка может варьировать от фибриллярной (вытянутой, нитеобразной) до глобулярной (округлой).
Четвертичная структура. Под четвертичной структурой белков понимают структурную связь двух или нескольких пространственно организованных полипептидных цепей, которые,
объединяясь, образуют биологически активную молекулу. Молекулы многих белков состоят из нескольких полипептидиых цепей, субъединиц, соединенных между собой непептидными связями: водородными, ионными или гидрофобными, которые и образуют четвертичную структуру. Если взаимное расположение субъединиц будет смещено, то это может вызвать различные изменения функции белка.
Все виды структуры белка имеют большое значение для проявления каталитической активности фермента и регуляторного действия ферментов в клетке.
Нативная конформация белка при нагревании или резком под-кислении среды может изменяться: нарушается вторичная, третичная или четвертичная структура, и образуется бепорядоч-ный клубок, т. е. происходит денатурация белка, которая не сопровождается разрывом ковалентных связей. Однако изменение структуры белка связано с изменением реактивности отдельных химических группировок, от которых зависят каталитические свойства фермента. В результате может утрачиваться активность фермента.
Белки различаются как по аминокислотному составу, так и по форме молекул. По форме молекулы все белки делятся на фибриллярные (нитевидные) и глобулярные (шаровидные), Различают две большие группы белков: протеины— простые белки, состоящие только из аминокислот, и протеиды — сложные белки, в состав которых, кроме аминокислот, входят и другие соединения. Протеины различаются по растворимости в воде и в водных растворах.
Альбумины—растворяются в воде. К ним относятся: оваль-бумин — белок яиц, лейкозин, содержащийся в зародыше пшеничного зерна, легумелин — в семенах гороха. Много альбуминов в зеленых частях растений.
Глобулины—растворяются в слабых водных растворах разных солей. В семенах гороха содержится легумин, в семенах фасоли фазеолин, в семенах конопли — эдестин, в семенах сои — глицинии и т. д.
Проламины—растворяются в 60—80%-ном водном этиловом спирте. В семенах пшеницы находится глиадин, в семенах ячменя — гордеин, в семенах кукурузы — зеин, в семенах овса — авенин, в семенах сорго — кафирин.
Глютелины — содержатся в семенах злаков и в зеленых частях растений. Растворяются в 0,2%-ной щелочи.
Фосфопротеины — имеют в своем составе фосфорную кислоту, например казеин — основной белок молока.
Предыдущая << 1 .. 11 12 13 14 15 16 < 17 > 18 19 20 21 22 23 .. 239 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed