Научная литература
booksshare.net -> Добавить материал -> Химия -> Ульянов В.М. -> "Поливинилхлорид" -> 107

Поливинилхлорид - Ульянов В.М.

Ульянов В.М., Рыбкин Э.П., Гуткович А.Д., Пищин Г.А. Поливинилхлорид — М.: Химия, 1992. — 288 c.
ISBN 5-7245-0727-7
Скачать (прямая ссылка): polyvinylchlorid.djvu
Предыдущая << 1 .. 101 102 103 104 105 106 < 107 > 108 109 110 111 112 113 .. 125 >> Следующая

Экструзия листов. Строгого разграничения между экструзией пленок и листов нет, за исключением того, что при получении экструзии листов толщиной более 800 мкм после экструдера используют каландры различной конструкции в зависимости от состава ПВХ композиций, требуемых толщины и ширины листов. Это касается прежде всего диаметра валков и .угла обхвата листового полотна. Большой диаметр валков требуется при производстве листов большой ширины, чтобы предотвратить прогиб листового полотна. Угол обхвата зависит от расположения валков. Например, при обычном линейном расположении валков в каландре он составляет 2x180° = 360°, а при расположении валков под прямым углом - 2x90° =180°. Улучшение входа полотна расплава из головок в зазор между валками достигается благодаря тому, что нижний валок относительно среднего валка отклоняется на угол ** 45°. Этим предотвращается вытягивание кромки пленки нижней губой головки и образование полос. Особенно важно это при получении высокопрозрачных листов [147].
10.2. Получение поливинилхлоридных пленок экструзией с раздувом
Получение тонких термопластичных пленок экструзией с раздувом находит широкое применение при переработке полимеров. Этим методом за рубежом производят большую часть пленок из полиоле-финов, поливинилхлорида и поливинилиденхлорида. Этим способом получают рукавные двухосно-ориентированные ПВХ пленки, физико-механические характеристики которых превосходят показатели плоских пленок [7,8].
242
Рис. 10.1. Схема технологической линии для производства рукавных ПВХ пленок:
1 — экструдер; 2 — кольцевая головка; 3 — система воздушного охлаждения; 4 — узел намотки; 5 — вытяжные валки; 6 — нижний бункер; 7 — трубопровод; 8 — промежуточная вакуум-камера; 9 — основной буккер
Как схематически показано на рис. 10.1, при экструзии с раздувом расплав полимера выдавливают через кольцевую головку 2 и вытягивают вверх вытяжным устройством 5. В головку подают воздух, раздувающий рукавную (трубчатую) заготовку. Для быстрого охлаждения горячего рукава и отверждения его на некоторой высоте применяют так называемое воздушное кольцо 3. Затем раздутый отвержден-ный рукав сплющивают, пропуская его через прижимные валки вытяжного устройства 5. Последние приводятся во вращение от двигателя с переменной частотой вращения, что позволяет получать необходимое осевое усилие для вытягивания пленки вверх, а также способствует поддержанию внутри раздутого рукава постоянного давления, намного превышающего атмосферное. Давление внутри рукава регулируют, изменяя количество воздуха, подаваемого в головку. При экструзии пленок ориентация макромолекул полимера определяется двумя технологическими параметрами: скоростью вытяжки и скоростью охлаждения. Однако при экструзии с раздувом важен еще один параметр, который может сильно влиять на ориентацию макромолекул ПВХ - давление воздуха внутри рукава (точнее, разность давлений по обе стороны тонкой пленочной оболочки).
Процесс экструзии с раздувом рассмотрен с позиций механики жидкостей в [174] и теории продольных течений - в [131]. Расплав полимера, выходящий из головки, течет под действием механического напряжения в направлении вытяжки. Но в процессе экструзии с раздувом трубчатая заготовка полимера вытягивается в двух направлениях - продольном и поперечном, поэтому экструзию с раздувом следует рассматривать как двухосное продольное течение.
243
Эксперименты по двухосному однородному растяжению полимеров при раздуве рукава [142] показали, что продольная вязкость уменьшается с ростом скорости деформации. Однако однородное двухосное растяжение реализуется при строго определенном соотношении между радиусом рукава и толщиной пленки. Обеспечить однородное двухосное растяжение в процессе экструзии с раздувом крайне трудно (если вообще возможно) из-за того, что распределение толщины пленки по высоте рукава заранее неизвестно. Из проведенных исследований можно сделать следующие важные выводы: скорость растяжения материала изменяется в направлении движения пленочного рукава; при изменении скорости растяжения эффективная продольная вязкость может увеличиваться, уменьшаться или оставаться постоянной в зависимости от природы материала и рассматриваемого интервала скоростей деформации; продольная вязкость материала снижается с повышением температуры.
Важными аспектами технологии получения рукавных пленок являются деформация полимера и процесс теплопередачи. При этом необходимо учитывать влияние силы тяжести материала, так как процесс получения рукавных пленок в промышленности в большинстве случаев проводят при экструзии расплава в направлении снизу вверх и сверху вниз. При этом сила тяжести пленки уравновешивается увеличением сил поверхностного натяжения расплава или гравитационные силы компенсируются тянущим усилием валков приемного устройства.
При рассмотрении баланса сил и энергии принимаются следующие допущения: толщина пленки достаточно мала, так что неоднородностью профиля скорости течения в поперечном направлении можно пренебречь; градиенты скорости деформации в выбранной (текущей) точке рукава можно вычислять так же, как двухосного (биаксиально-го) растяжения плоской пленки; силами поверхностного натяжения, инерции и трения пленочного рукава с воздуха можно пренебречь ввиду их малости по сравнению с напряжением, действующим на материал в продольном направлении при вытяжке пленки; теплопередачей между внутренней поверхностью рукава и находящимся в нем воздухом можно также пренебречь; охлаждение рукава происходит в основном за счет излучения и конвекции; тепловыделением от трения рукава о воздух можно пренебречь. Таким образом, можно сделать вывод о том, что из материалов, имеющих меньшую эффективную продольную вязкость, получаются рукава, диаметр которых меньше, чем при экструзии полимеров с более высокой эффективной продольной вязкостью [87].
Предыдущая << 1 .. 101 102 103 104 105 106 < 107 > 108 109 110 111 112 113 .. 125 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed