Научная литература
booksshare.net -> Добавить материал -> Химия -> Ашмарин И.П. -> "Нейрохимия " -> 26

Нейрохимия - Ашмарин И.П.

Ашмарин И.П., Антипенко А.Е. Нейрохимия — РАМН, 1996. — 470 c.
ISBN 5-900760-02-2
Скачать (прямая ссылка): neyrohimiya1996.djvu
Предыдущая << 1 .. 20 21 22 23 24 25 < 26 > 27 28 29 30 31 32 .. 188 >> Следующая

Концентрация гистамина в головном и спинном мозге низка, но он присутствует в значительных количествах в некоторых постганглионарных нервах. Его концентрация велика в переднем гипофизе и гипоталамусе. Субклеточно гистамин локализован преимущественно в синаптосомах.
2.7. ОСНОВНЫЕ АМИНОКИСЛОТЫ
Лизин пока мало исследован в аспекте его значения для нервной системы. Пути деградации лизина в мозге точно не установлены, но они отличаются от локализованных в печени. Лизин в мозге может катаболировать через образование пипеколо-вой кислоты.
Интересно и важно, что нервная система исключительно чувствительна к нарушению метаболизма лизина в других тканях. Последнее приводит к тяжелым деструктивным и демиелини-зационным процессам в ЦНС, сопровождающимся умственной отсталостью.
Аргинин в целом организме ассоциируется прежде всего с процессом синтеза мочевины. Однако в головном мозге не существует полного цикла образования мочевины, хотя некото-
66
рьге энзимы этого метаболического пути, такие как арпгаино-сукцинатсинтетаза (КФ 6.3.4.5), арпшиносукциназа (КФ 4.3.2.1) и аргиназа (КФ 3.5.3.1), найдены в этом органе. Центральный фермент цикла — орнитинкарбамоилтрансфераза (КФ 2.1.3.3 )
— не обнаружена в мозге.
Недавно выявлена еще одна важная функция аргинина. Он является источником образования окиси азота — мощного сосудорасширяющего фактора и нейромедиатора. Синтез N0 осуществляется с помощью фермента аргинат-синтазы. Образующийся при этом цитруллин включается в известный цикл образования мочевины. Функции N0 рассматриваются в гл. 7.
Генетические дефекты, связанные с метаболизмом аргинина и образованием мочевины вне нервной ткани, сопровождаются неврологическими последствиями. Все эти генетические заболевания, такие как цитруллинемия, аргининосукцинатацидурия, аргининемия, сопровождаются накоплением в плазме крови и в тканях отдельных метаболитов аргинина. Но, вероятно, наиболее серьезным последствием таких метаболических блоков является сопутствующее им повышение концентрации ионов аммония — гипераммониемия, особенно опасная для растущего мозга и часто ведущая к коме. При аргининосукцинатацидурии умственная отсталость может быть очень тяжелой. Это заболевание сопровождается дегенеративными изменениями в белом веществе мозга, дефектами миелинизации и недоразвитием кортикальных слоев.
Метаболизм орнитина — диаминокислоты, являющейся ближайшим родственником аргинина, в нервной ткани открывает еще одну важную функцию аминокислот — они являются предшественниками полиаминов, соединений, которые выполняют пока мало изученный комплекс регуляторных функций.
Выводы
1. Аминокислоты широко используются для синтеза многих белков, пептидов, нейромедиаторов и других биологически важных соединений. Некоторые аминокислоты сами служат нейромедиаторами .
2. Состав пула свободных аминокислот в нормальных физиологических условиях отличается постоянством, отдельные районы мозга имеют свои характерные метаболические пулы.
3. Разнообразные активные транспортные процессы служат для поддержания уровней и распределения метаболитов как в целом органе, так и в отдельных его районах. Многообразие
67
систем транспорта аминокислот ЦНС (низко- и высокоаффинные, Na-зависимые и независимые и т.д.) отражает полифункциональность этих соединений.
4. Пространственная разобщенность отдельных ступеней метаболизма аминокислот (так называемая метаболическая ком-партментализация) создает условия для пространственного разобщения энергетического метаболизма и не связанных с энергетикой функций и превращений аминокислот.
5. Головной мозг характеризуется высокой концентрацией аминокислот глутаминовой группы. Глутаминовая кислота, глутамин, ГАМК, аспарагиновая и N-ацетиласпарагиновая кислоты составляют в сумме 75% пула свободных аминокислот мозга.
6. Метаболизм аминокислот глутаминовой группы также чрезвычайно интенсивен. Эти аминокислоты выполняют ряд важных функций в ЦНС: энергетическую, служат для образования и устранения аммиака, выполняют роль нейромедиаторов и нейромодуляторов.
7. Ароматические аминокислоты имеют особое значение как предшественники катехоламинов и серотонина.
8. Нарушения, особенно генетические, в энзиматической системе метаболизма аминокислот часто имеют тяжелые неврологические последствия. Нарушение транспорта аминокислот в других органах часто также сопровождается неврологическими расстройствами.
68
Глава 3. Белки нервной системы Г.Г.Вольский, Н.Д.Ещенко, Е.П.Каразеева
Значительная часть белков нервной системы идентична белкам других органов и тканей в силу общности ряда базовых процессов жизнедеятельности. Однако существует обширная категория нейроспецифических белков (НСБ), связанных с особым устройством и функциями нервной системы. Поскольку эта система функционирует как единое целое, невозможно в ряде случаев рассматривать только нейроспецифические белки, отвлекаясь от других белков. Можно лишь, стремясь акцентировать биохимические особенности нервной системы, уделить особое внимание нейроспецифическим белкам, не исключая из описания и некоторые другие белки в той мере, в которой это необходимо для полной характеристики белковых комплексов. Это и является задачей настоящей главы.
Предыдущая << 1 .. 20 21 22 23 24 25 < 26 > 27 28 29 30 31 32 .. 188 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed