Научная литература
booksshare.net -> Добавить материал -> Биология -> Шевелуха Е.А. -> "Сельскохозяйственная биотехнология" -> 20

Сельскохозяйственная биотехнология - Шевелуха Е.А.

Шевелуха Е.А., Калашникова С.В., Дегтярев С.В., Кочиева Е.З. Сельскохозяйственная биотехнология — М.: Высшая школа, 1998. — 416 c.
Скачать (прямая ссылка): selskohoztehnika1998.djvu
Предыдущая << 1 .. 14 15 16 17 18 19 < 20 > 21 22 23 24 25 26 .. 180 >> Следующая

Растения, подвергающиеся термотерапии, помещают в специальные термокамеры, где в течение первой недели повышают температуру от 25° до 37° С путем ежедневного увеличения параметров температур на 2° С. Не менее важно при термотерапии создавать и поддерживать на протяжении всего процесса оптимальные режимы: температуру 37° С, освещенность лампа-
ми дневного света 5 тыс. лк, фотопериод в зависимости от культуры 14—16 ч в сутки при относительной влажности воздуха в термокамере 90%.
Продолжительность термотерапии всецело зависит от состава вирусов и их термостойкости. Если, например, для гвоздики достаточно 10—12-недельного воздействия теплом, то для освобождения хризантемы от Б-вируса этот период длится 12 и более недель. Однако существуют растения, например, луковичные культуры, цимбидиум, розы и другие, рост которых угнетается в результате длительной термотерапии in vivo. Для таких растений целесообразно проводить термотерапию растений-ре-генерантов in vitro.
Помимо положительного действия термотерапии на освобождение растений от вирусов, выявлен положительный эффект высоких температур на точку роста и процессы морфогенеза некоторых цветочных культур (гвоздики, хризантемы, фрезии) в условиях in vitro. Применение термотерапии позволяет увеличить коэффициент размножения на 50—60%, повысить адаптацию пробирочных растений-регенерантов к почвенным условиям, а также получить более высокий процент безвирусных маточных растений.
Применение термотерапии в сочетании с меристемной культурой позволяет оздоровить более 70% растений-регенерантов хмеля от вирусного хлороза, 90% растений земляники, 25% —черной и красной смородины, 50% —малины, более
80% — картофеля. Проверку растений на наличие вирусов, как правило, проводят с помощью иммуноферментного анализа, электронной микроскопии и травянистых растений-индикаторов.
Другой способ, применяемый для освобождения растений от вирусов,— хемотерапия. Он заключается в добавлении в питательную среду, на которой культивируют апикальные меристемы, аналога гуанозина—1р-Д-рибофуранозил-1,2,4-триа-зол-3-карбоксимид (коммерческое название вирозол) в концентрации 20—50 мг/л. Это противовирусный препарат широкого спектра действия. При использовании вирозола в культуральной среде процент безвирусных меристемных растений для ряда обычных для этих растений вирусов увеличивался до 80—100% при 0—41% в контроле. Положительные результаты хемотерапии были получены для сливы, черешни, малины, некоторых цветочных и других растений.
Техника культивирования растительных тканей на разных этапах клонального микроразмножения. Для культивирования тканей на каждом из четырех этапов требуется применение определенного состава питательной среды.
I э т а п . На этом этапе необходимо добиться получения хорошо растущей стерильной культуры. Это осуществляется путем стерилизации растительных тканей ртутьсодержащими растворами (сулема, или диацид, 0,1—0,2%-ная) или хлорсодержащими (хлорамин 10—15%-ный, гипохлорит натрия или кальция 5—10%-ный) в течение 5—10 мин для нежных, легко повреждаемых тканей растений и 10—20 мин — для тканей, имеющих более плотную оболочку. После этого растительные ткани необходимо тщательно промыть в стерильной дистиллированной воде, как правило, в трех порциях и перенести на приготовленную заранее стерильную питательную среду. В тех случаях, когда трудно получить исходную стерильную культуру экспланта, рекомендуется вводить в состав питательной среды антибиотики (тетрациклин, бензилпенициллин и др.) в концентрации 100—200 мг/л. Это в первую очередь относится к древесным растениям, у которых наблюдается тенденция к накоплению внутренней инфекции.
На первом этапе, как правило, используют среду, содержащую минеральные соли по рецепту Мурасига и Скуга, а также различные биологически активные вещества и стимуляторы роста (ауксины, цитокинины) в различных сочетаниях в зависимости от объекта. В тех случаях, когда наблюдается ингибирование роста первичного экспланта, за счет выделения им в питательную среду токсичных веществ (фенолов, терпенов и других вторичных соединений), снять его можно используя антиоксиданты. Это возможно двумя способами: либо омывкой экспланта слабым его раствором в течение 4—24 ч, либо непосредственным добавлением в питательную среду. В качестве антиоксидантов используют: аскорбиновую кислоту (1 мг/л), глютатион (4—5 мг/л), дитиотриэтол (1—3 мг/л), диэтилдитио-карбомат (2—5 мг/л), поливинилпирролидон (5000—10000 мг/л). В некоторых случаях целесообразно добавлять в питательную среду адсорбент — древесный активированный уголь в концентрации 0,5—1%. Продолжительность первого этапа может колебаться от 1 до 2 месяцев, в результате которого наблюдается рост меристематических тканей и формирование первичных побегов.
II этап —собственно микроразмножение. На этом этапе необходимо добиться получения максимального количества ме-риклонов, учитывая при этом, что с увеличением субкультивирований увеличивается число растений-регенерантов с ненормальной морфологией и возможно наблюдать образование рас-тений-мутантов. Как и на первом этапе, используют питательную среду по рецепту Мурасига и Скуга, содержащую 50
Предыдущая << 1 .. 14 15 16 17 18 19 < 20 > 21 22 23 24 25 26 .. 180 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed