Научная литература
booksshare.net -> Добавить материал -> Физика -> Вайнберг С. -> "Первые три минуты: современный взгляд на происхождение Вселенной" -> 39

Первые три минуты: современный взгляд на происхождение Вселенной - Вайнберг С.

Вайнберг С. Первые три минуты: современный взгляд на происхождение Вселенной — И.: НИЦ, 2000. — 272 c.
ISBN 5-93972-013-7
Скачать (прямая ссылка): pervietriminuti2000.djvu
Предыдущая << 1 .. 33 34 35 36 37 38 < 39 > 40 41 42 43 44 45 .. 95 >> Следующая


Другая возможность — в том, что плотность фотонов (или, правильнее, энтропии) не оставалась пропорциональной обратному кубу размера Вселенной. Такое могло случиться, если был какой-то вид отклонения от теплового равновесия, что-то вроде трения или вязкости, которые могли нагревать Вселенную и образовывать лишние фотоны. В этом случае барионное число на фотон могло вначале иметь какое-то разумное значение, возможно, близкое к единице, а затем упасть до его теперешнего малого значения, так как образовалось много
102

IV. Рецепт приготовления горячей Вселенной

фотонов. Трудность здесь в том, что никто не сумел предложить сколько-нибудь детальный механизм образования таких лишних фотонов. Несколько лет тому назад я сам пытался найти такой механизм, но без малейшего успеха*.

В последующем я буду игнорировать все эти «нестандартные» возможности и буду просто предполагать, что барионное число на фотон таково, каким оно, по-видимому, кажется: одна часть на миллиард.

Что можно сказать о плотности лептонного числа во Вселенной? Из того факта, что Вселенная не имеет электрического заряда, сразу же вытекает, что сейчас имеется ровно один отрицательно заряженный электрон на каждый положительно заряженный протон. Около 87 процентов ядерных частиц в теперешней Вселенной составляют протоны, так что число электронов близко к полному числу ядерных частиц. Если бы электроны были единственными лептонами в нынешней Вселенной, мы могли бы немедленно заключить, что лептонное число на фотон примерно такое же, как и барионное число на фотон.

Однако помимо электрона и позитрона имеется другой тип стабильных частиц, несущий ненулевое лептонное число. Нейтрино и его античастица антинейтрино — это электрически нейтральные безмассовые частицы вроде фотона, но с лептонными числами +1 и —1 соответственно. Следовательно, чтобы определить плотность лептонного числа в сегодняшней Вселенной, мы должны что-то знать о распространенности нейтрино и антинейтрино.

К сожалению, получить эту информацию невероятно трудно. Нейтрино похоже на электрон тем, что оно не чувствует сильных ядерных сил, которые удерживают протоны и нейтроны внутри атомного ядра. (Иногда я буду говорить «нейтрино», подразумевая как нейтрино, так и антинейтрино.) Однако в противоположность электрону нейтрино электрически нейтрально, так что оно не чувствует ни электрических, ни магнитных сил вроде тех, которые удерживают электроны внутри атома. На самом деле, нейтрино вообще слабо подвержено действию каких бы то ни было сил. Как и все прочее во

См. дополнение редактора б, с. 193. — Прим. ред.
IV. Рецепт приготовления горячей Вселенной

103

Вселенной, оно подвержено действию сил тяготения и, кроме того, ощущает слабые силы, ответственные за радиоактивные процессы, вроде упомянутого выше (см. с. 98) распада нейтрона (однако эти силы приводят лишь к ничтожному взаимодействию с обычным веществом). С целью показать, насколько слабо взаимодействует нейтрино, обычно приводят такой пример: для того чтобы иметь заметную вероятность остановки или рассеяния любого данного нейтрино, образованного в каком-то радиоактивном процессе, нам потребуется поместить на его пути слой свинца толщиной несколько световых лет. Солнце непрерывно излучает нейтрино, образованные при превращении протонов в нейтроны в ядерных реакциях в сердцевине Солнца; эти нейтрино пронизывают нас сверху в течение дня и снизу ночью, когда Солнце — на другой стороне Земли, так как Земля для них полностью прозрачна. Существование нейтрино задолго до того, как они были обнаружены, предположил Вольфганг Паули в качестве средства для расчета баланса энергии в процессах типа распада нейтрона. Только лишь в конце 50-х годов стало возможным непосредственно детектировать нейтрино или антинейтрино, образуя огромные их количества в ядерных реакторах или ускорителях частиц. При этом несколько сот нейтрино на самом деле останавливались и вызывали реакции внутри регистрирующей аппаратуры.

Легко понять, что при такой чрезвычайной слабости взаимодействия колоссальные количества нейтрино и антинейтрино могут заполнять Вселенную вокруг нас, причем мы и не подозреваем об их существовании. Удается получить ряд слабых верхних пределов на число нейтрино и антинейтрино; если бы этих частиц было слишком много, это слегка повлияло бы на определенные слабые ядерные процессы распада,

и, вдобавок, скорость космического расширения замедлялась бы сильнее, чем наблюдается. Однако эти верхние пределы не исключают возможности того, что плотность нейтрино и (или) антинейтрино такая же, как и плотность фотонов, причем с близкими энергиями*.

По поводу концентрации нейтрино см. дополнение редактора 7, с. 196. — Прим. ред.
104

IV. Рецепт приготовления горячей Вселенной

Несмотря на эти замечания, космологи обычно предполагают, что лептонное число (числа электронов, мюонов и нейтрино минус числа соответствующих античастиц) на фотон мало, много меньше единицы. Это делается исключительно по аналогии: барионное число на фотон мало, так почему же лептонное число на фотон не должно быть мало? Это одно из наименее надежных предположений, вводимых в стандартную модель, но, по счастью, даже если оно и неверно, общая картина, которую мы получим, изменилась бы лишь в деталях.
Предыдущая << 1 .. 33 34 35 36 37 38 < 39 > 40 41 42 43 44 45 .. 95 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed