Научная литература
booksshare.net -> Добавить материал -> Физика -> Вайнберг С. -> "Первые три минуты: современный взгляд на происхождение Вселенной" -> 84

Первые три минуты: современный взгляд на происхождение Вселенной - Вайнберг С.

Вайнберг С. Первые три минуты: современный взгляд на происхождение Вселенной — И.: НИЦ, 2000. — 272 c.
ISBN 5-93972-013-7
Скачать (прямая ссылка): pervietriminuti2000.djvu
Предыдущая << 1 .. 78 79 80 81 82 83 < 84 > 85 86 87 88 89 90 .. 95 >> Следующая


Было нетрудно развить конкретную модель, которая воплощала эти идеи. У меня было мало уверенности в правильности моего понимания сильных взаимодействий, поэтому я решил сконцентрировать свое внимание на лепто-нах. Существуют два левосторонних лептона электронного типа j'eL и еь и один правосторонний лептон электронного типа eR. Поэтому я начал с группы U(2) х U(l); все унитарные 2 х 2-матрицы действуют на левосторонние лептоны е-типа, тогда как все унитарные 1 х 1-матрицы воздействуют на правосторонний лептон е-типа. Подразделяя U(2) на унимодулярные преобразования и фазовые преобразования, можно было сказать, что группа была SU(2) х U(l) х U(l). Но тогда одна из групп U(l) могла быть соотнесена обычному лептонному числу, а поскольку лептонное число оказывается сохраняющимся и не существует никакой безмассовой векторной частицы, обладающей им, то я решил исключить его из группы. При этом остается лишь четырехпараметрическая группа SU(2) х U(l). Спонтанное нарушение симметрии SU(2) х U(l) до группы U(l) обычной электромагнитной калибровочной инвариантности привело бы к появлению масс у трех из четырех векторных калибровочных бозонов: заряженных бозонов W1*1 и нейтрального бозона, который я назвал Z0. Зная силу обычных слабых взаимодействий заряженных токов, подобных бета-распаду, которые обусловлены обменом W1*1, можно определить массу W1*1. Она оказалась равной около 40 ГэВ/sin^, где в — угол смешивания 7 — Z0.
230

Приложение

Чтобы продвинуться дальше, приходится принять определенную гипотезу о механизме нарушения SU(2) х U(l). В перенормируемой SU(2) х и(1)-теории единственным полем, с помощью которого можно было бы придать электрону массу за счет отличных от нуля вакуумных средних, является 8и(2)-дублет частиц (ф+,ф°) с нулевым спином. Поэтому для простоты я предположил, что эти поля являются единственными скалярными полями в теории. Масса Z°-6030Ha при этом оказалась равной 80 T3B/sin20. Таким образом, была зафиксирована сила взаимодействий слабых нейтральных токов. Действительно, точно так, как и в квантовой электродинамике, как только выбрано «меню» полей в теории, все детали такой теории полностью определяются принципами симметрии и перенормируемостью, если задать еще несколько свободных параметров: заряды и массы лептонов, фермиевскую константу связи бета-распада, угол смешивания в и массу скалярной частицы. Естественность такой теории хорошо демонстрирует тот факт, что практически такая же теория была независимо развита Саламом [27] в 1968 г.

Следующей проблемой была перенормируемость. Правила Фейнмана для теорий Янга-Миллса с ненарушенными калибровочными симметриями были разработаны [28] деВиттом, Фаддеевым и Поповым и другими, причем было известно, что такие теории перенормируемы. Однако в 1967 г. я еще не знал, как можно доказать, что это свойство перенормируемости не портится при спонтанном нарушении симметрии. Я усиленно работал над этой задачей в течение нескольких лет, частично вместе с моими студентами [29], но продвинулся в решении вопроса не намного. Оглядываясь назад, можно понять, что основная трудность заключалась в том, что при квантовании векторных полей я использовал калибровку, которая известна сейчас под названием унитарной калибровки [30]. Такая калибровка имеет ряд существенных преимуществ, например, она дает истинный спектр частиц в теории, но у нее есть и крупный недостаток, состоящий в том, что свойство пере-нормируемости в такой калибровке практически невозможно выяснить.

Наконец, в 1971 году ’тХоофт [31] показал в своей пре-
Идейные основы единой теории

231

красной статье, как можно разрешить эту проблему. Он придумал калибровку, в которой (наподобие «фейнмановской калибровке» в квантовой электродинамике) правила Фейнмана явно приводили только к конечному числу типов ультрафиолетовых расходимостей. Необходимо было также показать, что эти бесконечности удовлетворяли практически тем же ограничениям, что и лагранжиан теории, так что они могли бы быть устранены путем переопределения параметров этой теории. (Это казалось естественным, но доказательство не было простым, потому что калибровочно инвариантную теорию можно проквантовать лишь после того как выбрана определенная калибровка, так что совсем не очевидно, что ультрафиолетовые расходимости удовлетворяют тем же ограничениям, вытекающим из калибровочной инвариантности, что и сам лагранжиан.) Вскоре доказательство было завершено [32] в работах Ли и Зинн-Жюстена, а также ’тХоофта и Велтмана. Совсем недавно Бекки, Руэ и Стора [33] придумали изящный метод проведения такого доказательства, использующий глобальную суперсимметрию калибровочных теорий, которая сохраняется даже при выборе какой-либо специфической калибровки.

Мне придется признать, что, когда я впервые увидел статью ’тХоофта в 1971 г., я не поверил, что им найден путь доказательства перенормируемости. Но это была уже моя беда, а не вина ’тХоофта: я просто не был достаточно хорошо знаком с формализмом интегралов по траекториям, на котором основывалась работа ’тХоофта, и мне хотелось увидеть вывод фейнмановских правил в калибровке ’тХоофта из канонического квантования. Вскоре это было показано (для ограниченного класса калибровочных теорий) в статье Бена Ли [34]. После статьи Ли я уже был готов к восприятию мысли о том, что перенормируемость единой теории практически доказана.
Предыдущая << 1 .. 78 79 80 81 82 83 < 84 > 85 86 87 88 89 90 .. 95 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed