Научная литература
booksshare.net -> Добавить материал -> Физика -> Вайнберг С. -> "Первые три минуты: современный взгляд на происхождение Вселенной" -> 55

Первые три минуты: современный взгляд на происхождение Вселенной - Вайнберг С.

Вайнберг С. Первые три минуты: современный взгляд на происхождение Вселенной — И.: НИЦ, 2000. — 272 c.
ISBN 5-93972-013-7
Скачать (прямая ссылка): pervietriminuti2000.djvu
Предыдущая << 1 .. 49 50 51 52 53 54 < 55 > 56 57 58 59 60 61 .. 95 >> Следующая

144

VII. Первая сотая доля секунды

Вселенная!

Мы слишком мало знаем о квантовой природе гравитации даже для того, чтобы делать разумные предположения об истории Вселенной до этого времени. Можно сделать грубую оценку, что температура 1032 К была достигнута где-то через 10-43 секунды после начала, но, на самом деле, неясно, имеет ли эта оценка какой-то смысл. Таким образом, хотя мы, быть может, и приподняли другие завесы, остается все же одна завеса при температуре 1032 К, все еще заслоняющая от нашего взора более ранние времена.

Однако ни одна из этих неопределенностей не является существенной для астрономии в году от Рождества Христова тысяча девятьсот семьдесят шестом. Дело в том, что в течение всей первой секунды Вселенная, по-видимому, находилась в состоянии теплового равновесия, в котором количество и распределение всех частиц, даже нейтрино, определялись законами статистической механики, а не деталями их предыдущей истории. Когда мы сегодня измеряем распространенность гелия, или фон микроволнового излучения, или даже количество нейтрино, мы наблюдаем реликты состояния теплового равновесия, закончившегося в конце первой секунды. Насколько мы знаем, ничто из того, что мы можем наблюдать, не зависит от истории Вселенной до этого времени. (В частности, ничто из того, что мы сейчас наблюдаем, не зависит от того, была ли Вселенная изотропна и однородна до первой секунды, за исключением, возможно, самого отношения числа фотонов к числу ядерных частиц.) Это напоминает то, как если бы с большим старанием приготовили обед — свежайшие продукты, весьма заботливо выбранные специи, нежнейшие вина, — а затем все свалили в огромный котел, где это несколько часов кипело. Даже самому разборчивому едоку трудно было бы узнать, что ему подали.

Есть одно возможное исключение. Явление гравитации, как и явление электромагнетизма, может проявляться в форме волн, так же как и в более привычной форме статического действия на расстоянии. Два электрона в состоянии покоя отталкиваются друг от друга со статической электрической
VII. Первая сотая доля секунды

145

силой, зависящей от расстояния между ними, но если мы начнем дергать один электрон туда-сюда, то другой не будет чувствовать никакого изменения действующей на него силы до тех пор, пока новости об изменении расстояния не донесутся до него на электромагнитной волне. Едва ли нужно говорить, что эти волны движутся со скоростью света — они и есть свет, хотя и не обязательно видимый. Таким же образом, если бы какой-то неблагоразумный великан стал дергать туда-сюда Солнце, мы на Земле не чувствовали бы никакого эффекта в течение восьми минут, т. е. того времени, которое требуется волне, чтобы пробежать со скоростью света от Солнца к Земле. Это не световая волна, т. е. не волна колеблющихся электрического и магнитного полей, а гравитационная волна, когда колебания происходят в гравитационных полях. Как и в случае электромагнитных волн, мы объединяем гравитационные волны всех длин термином «гравитационное излучение».

Гравитационное излучение взаимодействует с веществом значительно слабее электромагнитного излучения или даже нейтрино. (Поэтому, хотя мы достаточно уверены в теоретическом обосновании существования гравитационного излучения, по-видимому, провалились самые энергичные попытки детектировать гравитационные волны от любого источника .) По этой причине гравитационное излучение вышло из теплового равновесия с другим содержимым Вселенной очень рано, когда температура была около 1032 К. С тех пор эффективная температура гравитационного излучения падала просто обратно пропорционально размеру Вселенной. Это в точности такой же закон уменьшения, какому подчиняется температура оставшейся части содержимого Вселенной, с той лишь разницей, что аннигиляция кварк-антикварковых и лептон-анти-лептонных пар нагревала все остальное содержимое Вселенной, кроме гравитационного излучения. Поэтому сегодня Вселенная должна быть заполнена гравитационным излучением при температуре, чуть меньше той, которую имеют нейтрино или фотоны, — возможно, около 1 К. Детектирование этого из-

О попытках обнаружения гравитационных волн и о последних достижениях в этой области см. дополнение редактора 11, с. 210. — Прим. ред.
146

VII. Первая сотая доля секунды

лучения явилось бы прямым наблюдением самого раннего момента истории Вселенной, который только может рассматривать сегодняшняя теоретическая физика. К сожалению, представляется, что в предвидимом будущем нет ни малейшего шанса детектировать одноградусный фон гравитационного излучения.

С помощью хорошей порции весьма спекулятивной теории мы смогли экстраполировать историю Вселенной назад по времени к моменту бесконечной плотности. Но это оставляет нас неудовлетворенными. Мы, естественно, хотим знать, что было перед этим моментом, прежде, чем Вселенная начала расширяться и охлаждаться.

Одна возможность заключается в том, что на самом деле никогда не было состояния бесконечной плотности. Теперешнее расширение Вселенной могло начаться в конце предыдущей эры сжатия, когда плотность Вселенной достигала какого-то очень большого, но конечного значения. Я хочу немного сказать об этой возможности в следующей главе.
Предыдущая << 1 .. 49 50 51 52 53 54 < 55 > 56 57 58 59 60 61 .. 95 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed