Научная литература
booksshare.net -> Добавить материал -> Физика -> Валле-Пуссен Ш.Ж. -> "Лекции по теоретической механике 1" -> 84

Лекции по теоретической механике 1 - Валле-Пуссен Ш.Ж.

Валле-Пуссен Ш.Ж. Лекции по теоретической механике 1 — М.: Ил, 1948. — 339 c.
Скачать (прямая ссылка): lexiipoteoriticheskoymehanike1948.pdf
Предыдущая << 1 .. 78 79 80 81 82 83 < 84 > 85 86 87 88 89 90 .. 104 >> Следующая

Глава IX. Центр тяжести

273

плоскости, поэтому и центр тяжести всей фигуры будет нахрдиться в той же плоскости.

3°. Если фигура плоская и имеет диаметр, то центр тяжести лежит на этом диаметре. Доказательство проводится так же, как в 2°.

4°. Если фигура (линия, поверхность, объем) обладает осью симметрии, так что она может быть разложена на пары элементов, соответственно равных друг другу и расположенных симметрично относительно этой оси, то, пользуясь тем же рассуждением, легко показать, что центр тяжести лежит га оси симметрии.

§ 3. ЦЕНТРЫ ТЯЖЕСТИ НЕКОТОРЫХ ПРОСТЫХ ФИГУР

218. Треугольник. — Медиана треугольника есть диаметр, делящий пополам хорды, параллельные основанию, поэтому на ней лежит центр тяжести (п° 217) площади треугольника. Следовательно, три медианы треугольника, пересекаясь, определяют центр тяжести площади треугольника.

Элементарные соображения показывают, что медианы треугольника пересекаются в точке, отстоящей на две трети длины каждой из них от соответствующей вершины. Поэтому центр тяжести площади треугольника лежит на любой его медиане на расстоянии двух третей ее длины от вершины.

219. Четырехугольник.—Центр тяжести площади четырехугольника определяется пересечением двух прямых, которые мы получаем, применяя распределительное свойство центров тяжести (п° 213).

Сначала делим четырехугольник диагональю на два треугольника. Центр тяжести четырехугольника лежит на прямой, соединяющей центры тяжести этих треугольников. Эта прямая и есть первая из двух искомых прямых.

Вторую прямую получим таким же способом, разбивая четырехугольник на два треугольника (отличных от предыдущих) посредством другой диагонали.

18 Зак. 958.
274

Часть третья. Статика

220. Многоугольник. — Мы знаем способы нахождения центров тяжести площади треугольника и четырехугольника. Чтобы определить центр 'тяжести площади многоугольника с произвольным числом сторон, предположим, что мы умеем находить центр тяжести площади многоугольника с меньшим числом сторон.

Тогда можно поступить так же, как в случае четырехугольника. Площадь данного многоугольника делят на две части двумя разными способами проведением диагоналей. В каждом из двух случаев соединяют прямой центры тяжести отдельных частей. Эти две прямые пересекаются в искомом центре тяжести.

221. Дуга окружности. — Пусть требуется определить центр тяжести дуги окружности АВ длины s. Отнесем окружность к двум взаимно перпендикулярным диаметрам ОХ и OY, из которых первый проходит через середину С дуги АВ. Центр тяжести лежит на оси ОХ, являющейся осью симметрии. Достаточно поэтому определить 5. Для этого имеем формулу:

= J" х ds.

S

Пусть будут: а—радиус окружности, с—длина хорды АВ, 0 — угол между осью ОХ и радиусом, проведенным к элементу ds, — 0О и 0о — значения 6, соответствующие концам дуги АВ. Имеем:

Ar = acos6, ds = adb, c = 2asin0o.

Тогда, принимая 0 за переменную интегрирования и выполняя интегрирование вдоль дуги АВ, получим:

е,

si = а2 \ cos 0 d 0 = 2a2 sin 0O = ас.

-'в»

Следовательно, центр тяжести дуги окружности лежит на радиусе, проведенном через середину дуги, в точке, расстояние которой от центра окружности есть четвертая пропорциональная длины дуги, радиуса и хорды.
Глава IX. Центр тяжести

27Ь

222. Круговой сектор. — Сектор, заключенный между дугой окружности и двумя радиусами ОА и ОВ, может быть разложен промежуточными радиусами на бесконечно малые равные между собою секторы. Эти элементарные секторы можно рассматривать как бесконечно узкие треугольники; центр тяжести каждого из них, по предыдущему, лежит на радиусе, проведенном через середину элементарной дуги этого сектора, на расстоянии двух третей длины радиуса от центра окружности. Равные между собою массы всех элементарных треугольников, сосредоточенные в их центрах тяжести, образуют однородную дугу окружности, радиус которой равен двум третям радиуса дуги сектора. Рассматриваемый случая приводится, таким образом, к отысканию центра тяжести этой однородной дуги, т. е. к задаче, решенной в предыдущем п°.

223. Тетраэдр. — Определим центр тяжести объема тетраэдра. Плоскость, проходящая через одно из ребер и через середину противоположного ребра, есть диаметральная плоскость, которая делит пополам хорды, параллельные этому последнему ребру: она содержит поэтому центр тяжести объема тетраэдра. Следовательно, шесть плоскостей тетраэдра, из которых каждая проходит через одно из ребер и через середину противоположного ребра, пересекаются в одной точке, представляющей собой центр тяжести объема тетраэдра.

Рассмотрим тетраэдр ABCD (фиг. 37); соединим вершину А с центром тяжести / основания BCD', прямая А/ есть пересечение диаметральных плоскостей, проходящих
276

Часть третья. Статика

через ребра АВ и АС\ поэтому она содержит искомый центр тяжести. Точка / находится на расстоянии двух третей медианы ВН от вершины В. Точно так же возьмем на медиане АН точку К на расстоянии двух третей ее длины от вершины Л. Прямая В К пересечет прямую А в центре тяжести тетраэдра. Проведем 1К\ из подобия треугольников АВН и ЮН видно, что IK. есть третья
Предыдущая << 1 .. 78 79 80 81 82 83 < 84 > 85 86 87 88 89 90 .. 104 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed