Научная литература
booksshare.net -> Добавить материал -> Физика -> Сивухин Д.В. -> "Общий курс физики Том 5. Часть 1. Атомная физика" -> 158

Общий курс физики Том 5. Часть 1. Атомная физика - Сивухин Д.В.

Сивухин Д.В. Общий курс физики Том 5. Часть 1. Атомная физика — Физматлит, 1986. — 426 c.
Скачать (прямая ссылка): obshiykursfizikit5chast1atomnayafizika1986.pdf
Предыдущая << 1 .. 152 153 154 155 156 157 < 158 > 159 160 161 162 163 164 .. 179 >> Следующая

Переносимые заряды, если бы они не убирались от границ кристалла, создали бы электрическое поле, противоположное по направлению приложенному полю Е. В результате ток в конце концов прекратился бы. Чтобы этого не было, надо указанные
ЭНЕРГЕТИЧЕСКИЕ ЗОНЫ В ТВЕРДЫХ ТЕЛАХ
371
заряды убирать и тем самым поддерживать приложенное поле Е. Можно было бы также в кристалле создать вихревое электрическое поле, например, помещением его в переменное магнитное поле. В таком случае равновесие невозможно, и внутри кристалла все время будет циркулировать индукционный электрический ток.
7. В полупроводниках, как и в диэлектриках, валентная зона полностью заполнена электронами, а зона проводимости полностью свободна. Обе зоны отделены одна от другой щелью конечной ширины. Однако в полупроводниках эта щель значительно уже, чем в диэлектриках. При абсолютном нуле температуры это обстоятельство не играет роли, так как в этом случае переход электрона из валентной зоны в зону проводимости невозможен (если не учитывать туннельные переходы). Но если температура кристалла отлична от абсолютного нуля, то электрон в валентной зоне может получить от иона кристаллической решетки энергии порядка kT и перейти в зону проводимости. (Именно порядка kT, так как из-за малой концентрации электронов в зоне проводимости они практически подчиняются классической статистике Больцмана.) Такой переход может быть осуществлен и другим способом, например освещением кристалла. Независимо от способа перехода электронов в зону проводимости кристалл приобретает способность проводить электрический ток.
Как и в металлах, в полупроводниках проводимость создается электронами, перешедшими в зону проводимости. Но существует и другой механизм проводимости. Электрон, ушедший из валентной зоны, оставляет в ней незаполненное состояние, называемое дыркой. Другой электрон в валентной зоне получает возможность перейти в это незаполненное состояние. При этом в валентной зоне создается новая дырка, в которую может перейти третий электрон, и т. д. Разумеется, при наличии электрического поля Е переходы, связанные с движением электронов против Е, более вероятны, чем переходы, связанные с обратным движением. Это и создает ток в направлении Е. Вместе с движением электрона происходит движение и соответствующей дырки, но в обратном направлении. Явление происходит так, как если бы ток вызывался не движением отрицательных электронов, а противоположно направленным движением положительно заряженных дырок.
Примеси, даже в ничтожных количествах, сильно повышают электрическую проводимость полупроводника. В запрещенной зоне (щели между валентной зоной и зоной проводимости) они создают добавочные энергетические уровни. Допустим, что такие уровни расположены вблизи края зоны проводимости. Тогда создается возможность для перехода электронов с таких уровней в зону проводимости. В результате проводимость полупро-
372
МАКРОСКОПИЧЕСКИЕ КВАНТОВЫЕ ЯВЛЕНИЯ
[ГЛ. VII
водника возрастает. Соответствующие примеси называются донорами. Они поставляют электроны в зону проводимости и увеличивают проводимость полупроводника. Если же добавочные уровни находятся вблизи края валентной зоны, то электроны из валентной зоны получают возможность переходить на эти уровни. В валентной зоне образуются дырки. Проводимость полупроводника также увеличивается. Она называется дырочной проводимостью, а соответствующая примесь — акцептором.
8. Проводимость полупроводников сильно увеличивается с повышением температуры. В чистых полупроводниках увеличение интенсивности теплового движения электронов облегчает вероятность перехода их через энергетическую щель из валентной зоны в зону проводимости. При наличии примесей также возрастает вероятность переходов электронов с примесных уровней в зону проводимости или переходов электронов из валентной зоны на те же примесные уровни. Все эти процессы ведут к повышению в полупроводнике концентрации носителей тока: электронов и дырок. С этим и связано увеличение проводимости полупроводников с повышением температуры.
Иначе ведут себя металлы. Концентрация электронов в них почти не зависит от температуры. Проводимость определяется главным образом длиной свободного пробега электрона. Длина свободного пробега отчасти ограничивается примесями решетки. Соответствующая часть проводимости не зависит от температуры. В бесконечной идеальной кристаллической решетке, лишенной всяких примесей и дефектов, плоская волна де Бройля, соответствующая движению электрона, распространялась бы без затухания и рассеяния. Проводимость такого кристалла была бы бесконечно велика. В действительности свободный пробег электрона ограничен размерами кристалла (ср. с § 57, пункт 4), а также тепловыми флуктуациями и дефектами кристаллической решетки. Они возрастают с температурой, уменьшая длину свободного пробега электрона. В результате проводимость чистых металлов уменьшается с повышением температуры. (Здесь мы исключили из рассмотрения сверхпроводники.)
§ 59. Зонная структура и волны Блоха
1. Зонную структуру энергетического спектра кристалла можно получить также из уравнения Шредннгера для стационарных состояний. Однако точное уравнение Шредингера для кристалла в целом решить и исследовать невозможно из-за громадного числа частиц (электронов и атомных ядер) в кристалле. Это уравнение необходимо предварительно упростить. При таком упрощении считается, что состояние кристалла можно приближенно описать не полной волновой функцией, зависящей от координат всех электронов и атомных ядер, а одночастичны-
Предыдущая << 1 .. 152 153 154 155 156 157 < 158 > 159 160 161 162 163 164 .. 179 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed