Научная литература
booksshare.net -> Добавить материал -> Физика -> Сивухин Д.В. -> "Общий курс физики термодинамика и молекулярная физика" -> 28

Общий курс физики термодинамика и молекулярная физика - Сивухин Д.В.

Сивухин Д.В. Общий курс физики термодинамика и молекулярная физика — Физматлит, 1970. — 565 c.
Скачать (прямая ссылка): obshiykurstermodinamika1970.djvu
Предыдущая << 1 .. 22 23 24 25 26 27 < 28 > 29 30 31 32 33 34 .. 240 >> Следующая

Приведем другой пример, в котором внутреннее состояние системы меняется в результате производства механической работы над ней. Возьмем толстостенную трубку из плексигласа, в которую входит плотно подогнанный поршень. К нижней части поршня прикрепим кусочек пироксилиновой ваты. При быстром вдвигании поршня воздух в трубке нагревается настолько сильно, что пироксилин воспламеняется (пневматическое или воздушное огниво).
Но состояние тел в оболочке можно изменять и без механического перемещения ее стенок. Так, воду в калориметре Джоуля или воздух в трубке предыдущего опыта можно нагреть на газовой горелке до той же температуры, до которой они были доведены ранее путем механического перемещения стенок оболочки. В результате эти тела окажутся в тех же самых конечных состояниях. Состояние тел в оболочке можно также менять, воздействуя на них
52
ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ
[ГЛ. II
извне различными силовыми полями, например, электрическим и магнитным. Вообще, состояние системы в оболочке можно менять путем изменения внешних параметров и температуры окружающих тел.
2. В § 1 для частных случаев было введено понятие адиабатической оболочки и приведены примеры оболочек, являющихся приблизительно адиабатическими. Дадим теперь общее определение адиабатической оболочки. Оболочка называется адиабатической, когда состояние заключенной в ней системы остается неизменным при любых изменениях температуры окружающих тел, если только значения внешних параметров поддерживаются постоянными. Таким образом, изменить состояние системы в адиабатической оболочке можно только путем изменения внешних параметров. Система, заключенная в адиабатическую оболочку, называется адиабатически изолированной.
3. Основное положение, с помощью которого в термодинамике можно расширить понятие энергии, состоит в следующем. Если система тел адиабатически изолирована, то работа внешних сил над этой системой зависит только от ее начального и конечного состояний, но совсем не зависит от способа или пути, каким осуществляется переход системы из начального состояния в конечное. Это не противоречит высказанному в § 12 утверждению о зависимости работы от пути перехода. Дело в том, что сейчас мы рассматриваем не все возможные переходы, а только такие, при которых сохраняется адиабатическая изоляция системы.
Сформулированное положение мы примем за постулат, выражающий содержание первого начала термодинамики. Его справедливость устанавливается опытом. Прямыми опытами, подтверждающими этот постулат, могут служить, например, классические опыты Джоуля по определению механического эквивалента теплоты. Они общеизвестны, и нет надобности останавливаться на их описании. Необходимо, однако, четко сформулировать, что эти опыты доказывают. Стенки калориметра в опытах Джоуля с хорошим приближением являются адиабатической оболочкой, в которой заключена вода или другая жидкость. Состояние жидкости в калориметре, если она находится в покое, определяется двумя параметрами, например, давлением и температурой. Давление в опытах Джоуля оставалось постоянным. Единственным переменным параметром, полностью определяющим состояние покоящейся жидкости, была температура. Состояние жидкости в калориметре можно менять различными способами. Можно применять мешалки и перегородки в калориметре различной формы, изготовлять их из различных материалов, менять их число и расположение, короче, можно как угодно варьировать устройство калориметра. Можно вращать мешалку быстро или медленно, равномерно или неравномерно. Жидкость в промежуточных состояниях может совершать спокой-
ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ
53
ное ламинарное движение, или ее движение может быть бурным и турбулентным. Все это отражается на ходе и скорости процесса. Но опыты Джоуля доказали, что механическая работа, которую необходимо затратить для перевода системы из одного строго фиксированного состояния в другое также строго фиксированное состояние, не зависит от способа перевода системы из начального состояния в конечное. К этому прежде всего и сводятся результаты опытов Джоуля. Другой результат опытов Джоуля состоит в установлении численного значения механического эквивалента тепла.
Но справедливость постулата первого начала термодинамики доказывается не только прямыми опытами типа опытов Джоуля. Постулат позволяет, не вдаваясь в рассмотрение механизма явлений, получать многочисленные следствия и количественные соотношения. В этом его громадное познавательное значение. Подтверждаемые опытом такие следствия и соотношения дают несравненно более точное и надежное доказательство самого постулата, чем прямые опыты.
4. Сделаем еще одно существенное замечание, на которое мы будем опираться в следующем параграфе. При вращении мешалки вода в калориметре Джоуля с адиабатическими стенками всегда нагревается, но никогда не охлаждается. Поэтому вращением мешалки невозможно адиабатически вернуть воду из конечного в прежнее начальное состояние. В дальнейшем на основе второго начала термодинамики будет показано, что это невозможно сделать никакими способами, если только вода остается адиабатически изолированной. То же относится к любой термодинамической системе. Если адиабатически изолированная система переходит из состояния 1 в состояние 2, то обратный адиабатический переход в состояние 1 может оказаться невозможным. Таким образом, не всегда возможно адиабатически перевести систему из какого-либо состояния в другое, произвольно заданное состояние. Однако, каковы бы ни были состояния 1 и 2, опыт показывает, что всегда возможен один из двух адиабатических переходов: либо из состояния 1 в состояние 2, либо обратный переход из состояния 2 в состояние 1 *). Однако одних квазистатических процессов для осуществления таких переходов недостаточно, для этого требуются также неравновесные адиабатические процессы. Рассмотрим, например, два состояния воды в калориметре Джоуля: состояние 1 при температуре 20 °С и состояние 2 при температуре 30 СС. Поскольку давление в калориметре поддерживается постоянным, состояние воды полностью
Предыдущая << 1 .. 22 23 24 25 26 27 < 28 > 29 30 31 32 33 34 .. 240 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed