Научная литература
booksshare.net -> Добавить материал -> Физика -> Лурье А.И. -> "Нелинейная теория упругости" -> 112

Нелинейная теория упругости - Лурье А.И.

Лурье А.И. Нелинейная теория упругости — М.: Наука, 1980. — 512 c.
Скачать (прямая ссылка): teoriyauprugosti1980.djvu
Предыдущая << 1 .. 106 107 108 109 110 111 < 112 > 113 114 115 116 117 118 .. 158 >> Следующая

, 1 4fe2 (1 у)2
' V - #>(1-v)2 '
j 2б] ПЛОСКИЕ ВОЛНЫ В НЕСЖИМАЕМОЙ УПРУГОЙ СРЕДЕ 393
По (7) находим
^ _ ут=4ЩГ=*Г 1
г_____*(1-У) ' (14)
К, yc-v)- j
т 6(1-v) г
Угол ф неограниченно возрастает при приближении к центру диска.
Центр -особая точка поля напряжений, реальный материал не сохранит в его
окрестности сплошности, следует ожидать образования трещины.
§ 26. Плоские волны в однородно напряженной, несжимаемой упругой среде
Здесь мы возвращаемся к рассмотрениям §§ 7 - 9 в предположении о
несжимаемости упругой среды. Уравнениям движения
(18.13) в ^"^-конфигурации придается вид
V-0? + V-pVwT - Vp' + pw2w = О, (1)
причем поле виртуальных перемещений удовлетворяет уравнению неразрывности
V- w = 0. (2)
Напряженное состояние в ^-конфигурации предполагается однородным -тензоры
Т и F постоянны
Т= рЕ + 2 [(эт -ф /гз2) F - d2F2], 2
F = o?e1e1 + ^e2e2 + t;iese3.
Здесь е^ -главные направления меры Фингера, и2 -ее постоянные главные
значения, причем
/3(F) = "=1. (4)
Давление р также постоянно и поэтому
V- pVwT = р\ • VwT = pVV-w = 0. (5)
Поскольку теперь э = а(11, /2), акустический тензор Q в уравнении
движения (7.7)
V-0? = -4&2Q-w (6)
определяется выражением
Q = ^ (ifiN • F •N +^2N • F2-N) E -f yф2 (N • F • NF + N • FF • N) -f + -
&nN • FF- N (N • FF2 - N + N • F2F • N)-f-ft22N • F2F2- N. (7)
394 МАЛАЯ ДЕФОРМАЦИЯ НАГРУЖЕННОГО ТЕЛА [ГЛ. 8
Задавая плоскую волну формулой (7.1) и пользуясь соотношением (7.4), по
(2) получим
\w~ikN-w, N-w = 0 (8)
- в несжимаемой среде, как и следовало ожидать, продольные волны
отсутствуют. По (1) и (5) имеем
N• Vp' = - 4fe2 N• Q• w, NN-Vp' = - 4&2 NN-Q-w.
Вместе с тем
N • Vp' = ik N ¦ Np' = ikp', NN • Vp' = t/г Np' = Vp
и поэтому
Vp' = - 4?2NN-Q-w. (9)
Уравнение движения (1) приведено к виду
Qx.w = ±pc4v, QX = Q -NN-Q (с2 = ю2/&2). (10)
Здесь Qx следует назвать акустическим тензором несжимаемой упругой среды.
Его представление по (7) приводится к виду
Qx = y(iKN-F-N + ф2N•F2•N)(E-NN) +
+iф2[N.F.NF+N.FF.N-2N.F.NNN.F)+
+й11(N•FF•N-N•F.NNN•F)4-+^i2 [(N - F-NN-F-N)F2-N + (N • F2 - NN • F2-N)
F-NJ +
+ S22(N-F2-NN-F2-N)F2-N. (11)
После замен грг, fyvr их значениями Ф1 ~ "Ь 7x^2, Ф2 ^2" ^11 ~
^11 2/i<912 "Ь 7i322 "Ь 32,
^12 = ^12 ^1^22> '&22 = ^22> (r) i = ~QjJ ' ^'^=~дГ{дТ^ ^ ^
приходим к выражению
Qx=-j91N-F-N(E - NN) +
+ j32[(/1N-F-N-N-F2-N)(E-NN)-N-F-NF-f N-FF-N] +
+ эи (N- FF - N - N • F • NNN • F) + э22 [N • F2F2-N - N • F2 - NN • F2-
l-+Л (N • FF • N - N-F • NNF • N)- /t (N • F2F2-NNF • N)] +
+ э12[2/j (N-FF-N - N-F-NNF-N) -(N-FF2-N - N-F-NNF2-N)-
- (N • F2F- N - N-F2-NNN-F)]. (12)
Конечно, Qx-N = N-Qx = 0, так как все слагаемые Qx имеют это свойство.
Поэтому в ортонормированном триедре N, t1( t2
$26] ПЛОСКИЕ ВОЛНЫ В НЕСЖИМАЕМОЙ УПРУГОЙ СРЕДЕ 395
тензор Qx оказывается плоским тензором
Qx = A.ntjtj + A,l2 (tjt2 + tsjtj) + ^22t2t2, (13)
причем здесь
IrlM'F'N+MAN'F-N-N.p.N)] bsk +
+ y32 (N• F • t^N - F-tft~ N¦ F¦ Ntj - F-tft)4-9uN• F -tfN • F-t^.^-
+э22 [N • F2-LN • FM. +/fN • F • t.N-F • t.ft-- / j (N • F2• tjN • F ¦
tft + N • F • tjN • F2 • tft)] +
+ 3i2 [2/XN • F • tfN • F • tft - N - F-t4N - F2- tft - N • F2- tftN ¦ F
• tj; (14)
s, k = 1, 2, a -символ Кронекера.
Переходим к рассмотрению частных случаев.
1. Главные волны. Нормаль N совмещается с главным направлением ех меры
Фингера; можно принять tt = еа, 1, = е3,таккак векторы t1; t2 определены
с точностью до поворота вокруг N. Получаем
^11 = jU?(3i+32o§), Я22 = уП?(э1+э2а |), к1г = О,
так что
qx =1п?[(э1+э2п1)е2е2 + (э1 + 9ап1)е3еа], (15)
и квадраты скоростей главных поперечных волн, распространяющихся в
направлении ех и поляризованных в плоскостях (е1( е2), (elt е3),
представляются формулами
% = Э1 + Э2п2, lp^L=9 +e 0J. (16)
2 Vi 2 Vi
Аналогично получаем, совмещая N с е, и е"
-ip^- = 9i+92vf, 1р -% = э1 + э2п|, (17)
2 V2 2 V2
= + -ip ~=9! + 92vl (18)
2 и3 2 у3
Сославшись на уравнение состояния (3), имеем
1 0J - 02 _ п " ",2 1 02 - 03 _ " , " "2
1 0з -0i
0 2 2 о 2 2 1 ' 2 1> "22
2 Vi-V2 2 V2 - V3 2 V3 - V1
и это позволяет придать выражениям квадратов скоростей главных волн вид
396
МАЛАЯ ДЕФОРМАЦИЯ НАГРУЖЕННОГО ТЕЛА
[ГЛ. 8
При выполнении 33(?-критериев, иначе говоря, пока материал остается
сильно эллиптическим, скорости вещественны - по главным направлениям меры
Фингера распространяются плоские волны. Это -необходимые условия
устойчивости среды, но они неполны, так как не исключена возможность, что
по направлениям, не совпадающим с главными, скорости не вещественны.
При невыполнении одного из$(?-критериев несжимаемая среда в однородном
напряженном состоянии неустойчива.
2. Плоская задача. Следуя Ривлину и Сэйрсу (1973), рассмотрим волны в
плоскости (ej, е2), линейно поляризованные в этой плоскости, так что
причем, как и выше, е^ -главные направления меры Фингера. Здесь в
соответствии с принятыми обозначениями
причем с12 -скорость волны в плоскости (е1( е2). При О
получаем
+ ^32[/1N-F-N-N-F:!-N + (N-F-t2)2-N-F-Nt2-N-t2] +
Предыдущая << 1 .. 106 107 108 109 110 111 < 112 > 113 114 115 116 117 118 .. 158 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed