Научная литература
booksshare.net -> Добавить материал -> Физика -> Левантовский В.И. -> "Механика космического полета в элементарном изложении" -> 51

Механика космического полета в элементарном изложении - Левантовский В.И.

Левантовский В.И. Механика космического полета в элементарном изложении — М.: Наука, 1980. — 512 c.
Скачать (прямая ссылка): mehanikakosmicheskogopoleta1980.djvu
Предыдущая << 1 .. 45 46 47 48 49 50 < 51 > 52 53 54 55 56 57 .. 221 >> Следующая


(V99 J/2 -VKP) + о + (ркр V2 -vKp) = 2икр (1/2-1) = 0,828?,

что в случае начальной высоты 200 км составит примерно 6,4 км/с — тоже не столь уж малую величину (достаточна для совершения посадки на Луне!).

Для малых углов поворота а нет смысла переходить «через бесконечность». Выгода будет обнаруживаться, начиная с некоторого угла а*, который для круговой орбиты определится из уравнения

2DKpsin^ = 2DKp(j/2-l),

или

8111^=,0,414,

откуда а*=48°54\ Недостаток «перехода через бесконечность» («бипараболического перехода», как еще говорят) заключается в «бесконечно большом» времени операции: в случае залета за лунную орбиту оно превышает 10 сут.

Переход через бесконечность может оказаться практически выгодным, если речь идет не только об изменении наклона орбиты, но и одновременно о ее подъеме, в частности если требуется пере- § 4. СПУСК C ОРБИТЫ

119

вести спутник с низкой орбиты, сильно наклоненной к экватору, на стационарную орбиту. При этом трехимпульсный переход может оказаться выгоднее двухимпульсного несмотря на то, что радиус стационарной орбиты значительно меньше критического радиуса і 1,9/?. Эта выгода обнаруживается, если наклонение низкой первоначальной орбиты больше 38,6°х).

Для наклонения і=50° сумма импульсов при переходе через бесконечность в случае старта с начальной орбиты радиуса 6630 км равна 4,485 м/с. Если же апогейное расстояние, на котором сообщается второй импульс Сточка В на рис. 36), равно 400 ООО км, то сумма импульсов превышает указанную величину на 45 м/с. Вся операция требует примерно 11 сут [2.101 2)-

Повороту плоскости орбиты может способствовать и аэродинамический маневр при наличии подъемной силы — проход через атмосферу планеты, хотя и требующий довольно сложного управления, но приводящий к экономии топлива. Например, можно почти полностью избавиться от последнего импульса при переходе через бесконечность, так же как это делается вообще при возвращении из района Луны (см. § 3 гл. 11). Но и при низкой орбите возможен такой маневр [2.111: тормозной импульс заставляет спутник сойти с орбиты, чтобы затем, войдя в плотные слои атмосферы (граница на высоте 100 км), совершить в них вираж и выйти из них уже в другой плоскости со скоростью меньшей, чем скорость входа. Остается теперь двумя разгонными импульсами вывести спутник на орбиту прежней высоты, заодно увеличив еще несколько отклонение плоскости орбиты. Для реальных значений аэродинамических коэффициентов и высоты орбиты до 600 км таким путем можно повернуть орбиту на 40-f-50°, выиграв по сравнению с чисто ракетным поворотом массу топлива, составляющую от 0,2 до 0,3 начальной массы спутника на орбите.

§ 4. Спуск с орбиты

Простейшим орбитальным маневром является спуск корабля-спутника на Землю.

Траекторию спуска можно разделить на три характерных участка.

Первый, переходный, участок простирается от точки схода спутника с орбиты до входа в плотные слои атмосферы, верхнюю границу которых можно считать расположенной на высоте пример-

1J Или если широта космодрома, с которого запускается стационарный спутник, больше указанной величины.

2) С оригинальным способом запуска стационарного спутника с высоких широт мы познакомимся в § 5 гл. 9. 120 ГЛ. 5. АКТИВНОЕ ДВИЖЕНИЕ В ОКОЛОЗЕМНОМ ПРОСТРАНСТВЕ

но 100 км Этот участок называют траекторией снижения. Он характерен тем, что аэродинамические силы на нем невелики и их можно рассматривать как возмущающие, подобно тому как мы это делали при рассмотрении эволюции орбиты спутника в атмосфере.

Второй участок является основным. На нем спускаемый аппарат испытывает воздействие больших аэродинамических сил, в несколько раз превышающих силу тяжести. Этот участок наиболее опасен как в смысле перегрузок, испытываемых аппаратом и его экипажем, так и в смысле интенсивности нагрева.

^Ha третьем, конечном, участке траектория быстро изгибается вниз и сила сопротивления в конце концов делается равной проекции силы тяжести на направление движения, т. е спуск становится равномерным.

Вход в плотные слои атмосферы должен происходить достаточно полого, чтобы торможение в атмосфере происходило не слишком быстро, иначе космонавт испытает гибельную перегрузку (в качестве предельного обычно принимается коэффициент перегрузки, равный IO1). Поскольку орбиты кораблей-спутников из-за радиационной опасности располагаются невысоко, для перехода на траекторию снижения достаточно сообщить спускаемому аппарату с помощью тормозной двигательной установки слабый ракетный импульс в сторону, противоположную полету. Для этого необходима предварительная ориентация корабля. Советские корабли-спутники типа «Восток» перед включением бортовой двигательной установки ориентировались на солнечный свет.

Наименьший импульс требуется в том случае, когда точка входа в плотные слои атмосферы находится на стороне Земли, противоположной точке схода с орбиты (трасса снижения охватывает дугу 180°). Однако такой маневр требует слишком большой точности величины и направления тормозного импульса. Обычно траектория снижения короче описанной и входит в плотные слои атмосферы несколько более круто, но угол входа не превосходит 5°. При этом выгоднее с точки зрения расхода топлива сообщить тормозной импульс не прямо противоположно движению, а под тупым углом к вектору скорости: оптимальный тормозной импульс должен иметь кроме трансверсальной еще и радиальную составляющую, направленную к Земле Величина импульса составляет 150— 200 м/с
Предыдущая << 1 .. 45 46 47 48 49 50 < 51 > 52 53 54 55 56 57 .. 221 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed