Научная литература
booksshare.net -> Добавить материал -> Физика -> Китайгородский А.И. -> "Физика для всех. Электроны" -> 21

Физика для всех. Электроны - Китайгородский А.И.

Китайгородский А.И. Физика для всех. Электроны. Под редакцией Главная редакция физико-математической литературы — М.: Наука, 1979. — 208 c.
Скачать (прямая ссылка): fdvek3kn1979.djvu
Предыдущая << 1 .. 15 16 17 18 19 20 < 21 > 22 23 24 25 26 27 .. 69 >> Следующая


Резкое возрастание тока после перехода этого критического предела объясняется лавинообразным увеличением числа зарядов. Один образовавшийся электрон разрушает нейтральную молекулу и создает два

59

заряда такой большой энергии, что они способны разбить другую пару молекул, попавшуюся им по дороге. Из двух зарядов образуются четыре, из четырех восемь... Согласитесь, что название «лавина» вполне оправдано.

Создана количественная теория, которая неплохо предсказывает вид вольт-амперных характеристик газов.

САМОСТОЯТЕЛЬНЫЙ РАЗРЯД

Существует много разновидностей этого разряда. Мы остановимся лишь на некоторых из них.

Искровой разряд. Искру, проскакивающую через воздух между двумя электродами, нетрудно наблюдать в самых элементарных опытах. Для этого надо поднести друг к другу провЪда, находящиеся под напряжением, достаточно близко друг к другу. Что значит «достаточно»? Если речь идет о воздухе, то для этого требуется создать напряженность поля, равную 30 тысячам вольт на один сантиметр. Значит при маленьком расстоянии в один миллиметр достаточно разности потенциалов в 300 вольт. Небольшие искры каждый из читателей неоднократно наблюдал в житейской практике, возясь с неисправной электропроводкой или случайно приблизив друг к другу два провода, идущие от аккумулятора (тут уже надо сблизить провода на толщину бритвенного лезвия).

Напряжение пробоя зависит от плотности газа. Играет роль и форма электродов.

Искра пробивает не только газ, но также и диэлектрические жидкости и твердые тела. Электротехнику важно знать пробойные напряжения всех материалов, которыми он оперирует.

Сейчас нам кажется * совершенно очевидным, что молния — это искра, которая проскакивает между двумя облаками, заряженными электричеством разных знаков.4 Однако в свое время физики (Михаил Васильевич Ломоносов (1711—1765), Бенджамин Франклин (1706—1790)) положили немало сил для доказательства этого утверадения. А Георг Рихман (1711 — 1753), работавший вместе с Ломоносовым, поплатился

своей жизнью при попытке отвести молнию в Землю через проводящую ток бечевку — хвост воздушного змея, запущенного в небо во время грозы.

Можно привести интересные цифры, характеризующие искровой-разряд в молний. Напряжение между облаком и Землей Ю8—10д вольт, сила тока колеблется от десятков до сотен тысяч ампер, диаметр светящегося канала 10—20 сантиметров.

Длительность вспышки молнии невелика — порядка микросекунды. Нетрудно прикинуть, что количества электричества, пробегающие по каналу молнии, относительно малы.

При помощи киносъемки небесные искры хорошо изучены. Очень часто молния представляет собой ряд искровых разрядов, следующих по одному пути. У молнии есть своего^ рода «лидер», который пробивает наиболее удобную, всегда причудливо разветвленную дорогу для электрических зарядов.

Часто наблюдались шаровые молнии. К сожалению, их не удается воспроизвести в лабораторных условиях. Это светящиеся шары газовой плазмы диаметром 10— 20 см. Они медленно двигаются, а иногда и стоят на месте. Существуют они несколько секунд, а то и минут, а затем исчезают с сильным взрывом. Признаемся, что до сих пор еще не предложена исчерпывающая теория этого интересного явления.

Дуговой разряд. Его получил впервые В. В. Петров еще в 1802 г. Для этой цели он приводил в соприкосновение два куска угля, к которым был подведен мощный источник напряжения, а затем раздвигал ^электроды. Этот прием сохранился и по сей день. Правда, сейчас используют специальные угли, которые изготовляются из прессованного графитового порошка. Положительный уголь сгорает быстрее отрицательного. Поэтому по внешнему виду сразу же можно определить, к какому из углей подведен положительный полюс: на конце этого электрода образуется углубление — кратер. Температура кратера в воздухе при обычном давлении доходит до 4000 градусов, а если повысить давление; то температуру дуги можно довести почти до 6000 градусов, тГ е. до температуры поверхности Солнца. Дуга между металлическими электродами дает пламя, температура которого значительно ниже.

Для поддержания дугового разряда нужно небольшое напряжение порядка 40—50 вольт. Ток может достигать сотен ампер, поскольку сопротивление светящегося газового столба невелико.

Как же объяснить большую электропроводность газа при столь малых напряжениях? Молекулы разгоняются до небольших скоростей, и их соударения не могут играть роль в возникновении сильного тока. Объяснение таково: в первый момент в месте контакта происходит сильный, разогрев. Благодаря этом^г начинается процесс термоэлектронной эмиссии — катод выбрасывает большое число электронов. Отсюда, кстати, следует, что важна высокая температура только катода, анод может быть холодным.

Механизм дугового разряда этого типа совсем не тот, что в искровом разряде.

Читателю, наверное, можно не напоминать, сколь велико значение этого явления на практике. Дуговой разряд используется при сварке и резании металлов, а также в электрометаллургии. v

Тлеющий разряд. Этот вид самостоятельного разряда также имеет большое практическое значение, так как-«происходит в газосветных-трубках, или, как их еще называют, лампах дневного света. Трубка конструируется и наполняется газом (давление существенно меньше атмосферного) так, чтобы обеспечить ее работу в условиях напряжения, превосходящего напряжение зажигания. Электрический ток в газосветных трубках создается ионизацией молекул электч. ронами, а также тем, что .из катода трубки выбиваются электроны. Газосветная трубка зажигается не сразу. Это происходит, видимо, по той причине, что первый толчок должен быть полнен,от .небольшого количества заряженных частиц, которые всегда присутствуют в любом газе.
Предыдущая << 1 .. 15 16 17 18 19 20 < 21 > 22 23 24 25 26 27 .. 69 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed