Научная литература
booksshare.net -> Добавить материал -> Физика -> Калитеевский Н.И. -> "Волновая оптика" -> 42

Волновая оптика - Калитеевский Н.И.

Калитеевский Н.И. Волновая оптика — М.: Высшая школа, 1995. — 463 c.
ISBN 5-06-003083-0
Скачать (прямая ссылка): volnovayaoptika1995.djvu
Предыдущая << 1 .. 36 37 38 39 40 41 < 42 > 43 44 45 46 47 48 .. 175 >> Следующая

Как общий вывод из проведенного рассмотрения природы светового давления следует законность введения понятия импульса электромагнитного поля g, непрерывно распределенного по всему объему, где отличен от нуля вектор плотности потока электромагнитной энергии S. Действительно, будем исходить из формулы (2.32), которая для единичной площадки, перпендикулярной направлению распространения волны п, имеет вид
Если волна распространяется в вакууме (скорость ее будет с), то за 1 с через единичную площадку пройдет вся энергия, сосредоточенная в прямоугольнике, основание которого равно 1 см2, а ребро численно равно с. Следовательно, произведение Af на At = 1 с будет соответствовать импульсу поля, сосредоточенному в объеме, численно равном с см3. Поэтому средняя плотность импульса электромагнитного поля
g = S/c2 = [ЕН] . (2.39)
471C
Значение этого утверждения в полной мере проявляется в фотонной теории (см. § 8.5). На данном этапе изложения материала представляется важным отметить, что существование светового давления и связанного с ним понятия импульса электромагнитного поля может быть доказано в рамках электромагнитной теории света.
В последнее время световое давление снова привлекло внимание исследователей. Для экспериментов в этой области оказались весьма удобными некоторые свойства лазеров, а именно монохроматичность излучения и эквивалентность лазера точечному источнику света. Лазерное излучение может быть сфокусировано с высокой точностью*. При использовании хороших оптических систем (см. §6.8) можно сфокусировать лазерное излучение в пятно с радиусом того же порядка величины, что и длина волны генерации. Простые оценки показывают, что если в фокусе лазерного излучения мощностью 1 Вт (такая большая мощность легко реализуется, например, в аргоновом лазере, генерирующем в зеленой области спектра) оказывается малая частица с массой » 10-12 г, полностью отражающая излучение, то под действием светового давления она должна получить ускорение, в миллион раз превышающее ускорение свободного падения .
При экспериментальном осуществлении этой идеи, конечно, возникает ряд трудностей. Так, например, исключена возможность использования высокоотражающих металлических частиц, так как даже при коэффициенте отражения Л = 98% оставшихся 2% поглощенной энергии достаточно для сильного нагрева и далее плавления исследуемых объектов. Опыт удалось осуществить*, используя малые сферические диэлектрические частицы, помещенные в дистиллированную воду. Хотя в этом
iji>
В гл. 6 подробно рассмотрена пространственная когерентность лазера, определяющая его эквивалентность точечному источнику, и указаны особенности фокусировки лазерного излучения.
**См.: Пеньков С.Н. и др. / Под ред. Н.И.Калитеевского. Лекционные демонстрации по оптике. Л., 1981.
111
2.27. Схема опыта по давлению света:
1 — аргоновый лазер ЛГ-106; 2 — зеркало; 3 — кювета с водой; 4 — линза; 5 — частица полиметилакри-лата, оказавшаяся в фокусе излучения лазера. На фотографии фиксируется свечение частицы, поддерживаемой в воде световым давлением вертикального лазерного пучка
случае коэффициент отражения мал [Л - (Ап)2; см. §2.2], силы, действующие на частицы, достаточно велики и удается доказать, что их природа непосредственно связана со световым давлением.
При освещении кюветы сфокусированным излучением аргонового лазера хорошо наблюдается движение конвекционных потоков частиц, находящихся вне фокуса (рассмотрение действующих в таких условиях сил см. в УФН, 110, 1973). В течение нескольких секунд, а иногда и минут можно наблюдать., яркое свечение рассеянного на «взвешенной» частице лазерного излучения (рис. 2.27). Следует заметить, что в этом эффектном опыте проявляются особенности лазерного излучения, которое можно сфокусировать в пятно диаметра А. и создать условия, позволяющие освободиться от вторичных эффектов, которые при использовании тепловых источников во много раз превышают исследуемое явление.
ЭЛЕМЕНТЫ ОПТИКИ КРИСТАЛЛОВ ........—----- Глава 3
В предыдущем изложении предполагалась изотропность среды, в которой распространяются электромагнитные волны. Однако в природе существуют тела, не удовлетворяющие этому требованию. Прохождение света в таких средах сопровождается дополнительными эффектами, рассмотрению которых и посвящена эта глава.
Физическая природа наблюдаемых явлений обусловлена взаимодействием световой волны и вещества, анизотропия которого может быть связана с особенностями строения его молекул или, что чаще имеет место, с особенностями кристаллической решетки, в узлах которой находятся атомы или ионы исследуемого вещества .
Взаимодействие света с веществом для большинства кристаллов уже не может быть моделировано колебаниями одного осциллятора. Для описания таких анизотропных сред необходимо ввести три различных взаимно перпендикулярных осциллятора и характеризовать три взаимно перпендикулярных направления в кристалле различными значениями показателя преломления. Для широкого класса одноосных кристаллов можно свести описание к колебаниям двух осцилляторов.
Предыдущая << 1 .. 36 37 38 39 40 41 < 42 > 43 44 45 46 47 48 .. 175 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed