Научная литература
booksshare.net -> Добавить материал -> Физика -> Гнеденко Б.В. -> "Курс теории вероятностей " -> 5

Курс теории вероятностей - Гнеденко Б.В.

Гнеденко Б.В. Курс теории вероятностей — М.: Наука, 1988. — 445 c.
Скачать (прямая ссылка): kursteoriiveroyatnostey1988.pdf
Предыдущая << 1 .. 2 3 4 < 5 > 6 7 8 9 10 11 .. 176 >> Следующая

Введение

13

вероятностей оказалось тесно связанным с теорией стохастических процессов. Элементы этой важной главы теории вероятностей будут изложены нами в главе десятой.

За последние десятилетия неизмеримо выросла роль, которую играет теория вероятностей в современном естествознании. После того как молекулярные представления о строении вещества получили всеобщее признание, стало неизбежным широкое использование теории вероятностей и в физике и в химии. Заметим, что с точки зрения молекулярной физики каждое вещество состоит из огромного числа малых частиц,'находящихся в непрерывном движении и в процессе этого движения воздействующих друг на друга. При этом о природе этих частиц, о существующем между ними взаимодействии, характере их движения и пр. известно мало. В основных чертах эти сведения исчерпываются тем, что частиц, из которых состоит вещество, очень много и что в однородном теле они близки по своим свойствам. Естественно, что при таких условиях обычные для физических теорий методы математических исследований становились бессильными. Так, например, аппарат дифференциальных уравнений не мог привести в указанной обстановке к серьезным результатам. Действительно, ни строение, ни законы взаимодействия между частицами вещества в достаточной мере не изучены, и при таких условиях применение аппарата дифференциальных уравнений должно носить элементы грубого произвола. Но даже если бы этой трудности не существовало, уже одно количество этих частиц представляет собой такую трудность в изучении их движения, которую преодолеть с помощью обычных уравнений механики нет возможности.

К тому же и методологически такой подход неудовлетворителен. Действительно, задача, которая здесь возникает, состоит не в изучении индивидуальных движений частиц, а в изучении тех закономерностей, которые возникают в совокупностях большого числа движущихся и взаимодействующих частиц. Закономерности же, возникающие вследствии участвующих в их возникновении ингредиентов, имеют свое собственное своеобразие и не сводятся к простому суммированию индивидуальных движений. Более того, эти закономерности в известных пределах оказываются не зависящими от индивидуальных особенностей участвующих в их порождении частиц. Конечно, для изучения этих новых закономерностей должны быть найдены и соответствующие новые математические методы исследования. Какие же требования должны быть в первую очередь предъявлены к этим методам? Понятно, что в первую очередь они должны учитывать то, что изучаемое явление носит массовый характер; таким образом, для этих методов наличие большого числа взаимодействующих частиц должно представлять не дополнительную трудность, а облегчать изучение возникающих закономерностей. Далее, недостаточность знаний о природе и строении частиц, а также о характере их взаимодействия также не должна ограни-
14

Введение

чиватъ эффективности их применения. Этим требованиям лучше всего удовлетворяют методы теории вероятностей.

Чтобы сказанное не было понято ошибочно, мы еще раз подчеркнем следующее обстоятельство. Говоря, что аппарат теории вероятностей лучше приспособлен для изучения молекулярных явлений, мы ни в какой мере не хотим сказать, что философские предпосылки использования теории вероятностей в естествознании лежат в ’’недостаточности знаний”. Основной принцип состоит в том, что при изучении ”м а с с о в ы х” явлений возникают своеобразные новые закономерности. При изучении явлений, обусловленных действием большого числа молекул, учет свойств каждой молекулы не нужен. Действительно, при изучении явлений природы необходимо отвлекаться от учета несущественных подробностей. Рассмотрение же всех деталей, всех существующих связей, в том числе и несущественных для данного явления, приводит лишь к тому, что само явление затемняется и овладение им отодвигается ввиду такой искусственной усложненной обстановки.

Насколько удачно произведена схематизация явлений, насколько удачно выбран математический аппарат для его изучения, мы можем судить по согласию теории с опытом, с практикой. Развитие естествознания, в частности физики, Показывает, что аппарат теории вероятностей оказался весьма хорошо приспособленным к изучению многочисленных явлений природы.

Указанная связь теории вероятностей с потребностями современной физики лучше всего поясняет те причины, в силу которых в последние десятилетия теория вероятностей превратилась в одну из наиболее быстро развивающихся областей математики. Новые -теоретические результаты открывают новые возможности для естественнонаучного использования метода теории вероятностей. Всестороннее изучение явлений природы толкает теорию вероятностей на разыскание новых закономерностей, порождаемых случаем. Теория вероятностей не отмежевывается от запросов других наук, а идет в ногу с общим развитием естествознания. Понятно, что сказанное не означает, что теория вероятностей является лишь вспомогательным средством для решения тех или иных практических задач. Наоборот, следует подчеркнуть, что за последние три десятилетия теория вероятностей превратилась в стройную математическую дисциплину с собственными проблемами и методами доказательств. В то же время выяснилось, что наиболее существенные проблемы теории вероятностей служат делу решения различных задач естествознания.
Предыдущая << 1 .. 2 3 4 < 5 > 6 7 8 9 10 11 .. 176 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed