Научная литература
booksshare.net -> Добавить материал -> Физика -> Феинман Р. -> "КЭД Странная теория света и вещества" -> 14

КЭД Странная теория света и вещества - Феинман Р.

Феинман Р. КЭД Странная теория света и вещества — M.: Наука, 1988. — 144 c.
ISBN 5-02-013883-5
Скачать (прямая ссылка): stsiv1988.djvu
Предыдущая << 1 .. 8 9 10 11 12 13 < 14 > 15 16 17 18 19 20 .. 54 >> Следующая


6

Рис. 19. Согласно классической картине мира зеркало будет отражать свет там, где угол падения равен углу отражения, даже если источник и детектор находятся на разных уровнях, как показано в случае б. [В дальнейшем на рисунках источник изображается буквой S (от source), фотоумножитель — Я (от photomultiplier).—

Примеч. пер.]

И кажется довольно очевидным, что части зеркала вблизи обоих его концов имеют такое же отношение к отражению, как к цене сыра, не так ли?

Хотя вы можете думать, что части зеркала вблизи обоих концов не имеют никакого отношения к отражению света, попадающего из источника в детектор, давайте посмотрим, что может сказать по этому поводу квантовая теория. Правило: вероятность того, что данное событие произойдет, равна квадрату результирующей стрелки, которую найдем, начертив стрелки для каждого способа, которым может произойти событие, и затем соединив («сложив») их. В эксперименте по измерению частичного отражения света от двух поверхностей было два пути, которыми фотон мог попасть из источника в детектор. В этом эксперименте (отражение от одной поверхности) фотон может лететь миллионом различных путей: он может попасть в левую часть

37

зеркала в А или в В (например) и отскочить в детектор (см. рис. 20); он может отскочить от той части, от какой он, по вашему мнению, и должен отскакивать — от G; или он может попасть в правую часть зеркала в К или M и отскочить оттуда. Вы можете подумать, что я сошел с ума, так как

ABB GH KM

Рис. 20. Согласно квантовой картине мира свет имеет одинаковую амплитуду отразиться от любой части зеркала, от А до M

в большинстве названных мною случаев угол падения не равен углу отражения. Но я не сошел с ума, потому что в действительности свет распространяется именно так! Как это может быть?

Чтобы упростить проблему, предположим, что зеркало представляет собой только длинную полоску слева направо, т. е. забудем на минуту, что зеркало имеет толщину и

Рис. 21. Чтобы легче было вычислить, где проходит свет, будем временно рассматривать только полоску зеркала, разделенную на квадратики. Каждому квадратику соответствует одна траектория. Это упрощение никоим образом не уводит в сторону от точного анализа ситуации

возвышается над бумагой (см. рис. 21). Хотя в действительности на этой зеркальной полоске имеется миллион мест, откуда мог бы отразиться фотон, приближенно допустим, временно разделив зеркало на конечное число маленьких квадратиков, что есть только одна траектория для каждого квадратика. Наш расчет будет более точным (но и производить его станет труднее) по мере того, как мы будем уменьшать квадратики и рассматривать большее количество траекторий.

Теперь нарисуем стрелку для каждого способа, которым свет может распространяться в этой ситуации. Каждая стрелка имеет определенную длину и направление. Рассмотрим сначала длину. Вы можете подумать, что стрелка, 38

которую мы проведем для траектории, проходящей через середину зеркала G, будет самой длинной (так как кажется, что очень велика вероятность того, что фотон, попадающий в детектор, летит именно так), а стрелки для траекторий, проходящих через концы зеркала, будут очень короткими. Нет, нет, мы не должны устанавливать такие произвольные правила. А настоящее правило — и то, что на самом деле происходит,— гораздо проще: фотон, попадающий в детектор, имеет почти равные шансы попасть туда любым путем, так что все стрелки будут иметь почти

Рис. 22. Каждый путь, по которому может идти свет, будет представлен в наших вычислениях стрелкой произвольной стандартной дли- ^^7' ны (как показано)

одинаковую длину. (В действительности имеются очень небольшие различия в длине, связанные с различием в углах и расстояниях, но они настолько незначительны, что я их просто не буду учитывать.) Так что давайте условимся, что все нарисованные нами стрелки будут иметь некую произвольную одинаковую длину — я сделаю их очень короткими, потому что у нас будет очень много этих стрелок, изображающих множество возможных траекторий света (см. рис. 22).

Хотя можно смело предположить, что все стрелки будут иметь почти одинаковую длину, они будут направлены по-разному, так как время пути по каждой траектории различно. Как вы помните из первой лекции, направление

Рис. 23. B то время как длина стрелок существенно не меняется, направление будет различным, потому что фотону требуется разное время для движения по разным траекториям. Ясно, что время прохождения пути S-A—P больше, чем время прохождения пути S—С—P

данной стрелки определяется конечным положением стрелки воображаемых часов, измеряющих время движения фотона по данной траектории. Ясно, что фотону, который попадает сначала в левый конец зеркала, а затем в детектор,

39

требуется больше времени, чем фотону, попадающему в детектор из середины зеркала G (см. рис. 23). Или представьте на минуту, что вы очень торопитесь, а вам надо добежать от источника до зеркала, а оттуда попасть в детектор. Вы, конечно, понимаете, что глупо будет отправиться сначала в А, и потом проделывать весь долгий путь до детектора; гораздо быстрее будет коснуться зеркала где-нибудь в середине.
Предыдущая << 1 .. 8 9 10 11 12 13 < 14 > 15 16 17 18 19 20 .. 54 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed