Научная литература
booksshare.net -> Добавить материал -> Физика -> Бутиков Е.И. -> "Физика для углубленного изучения 3. Строение и свойства вещества" -> 93

Физика для углубленного изучения 3. Строение и свойства вещества - Бутиков Е.И.

Бутиков Е.И., Кондратьев А.С., Уздин В.М. Физика для углубленного изучения 3. Строение и свойства вещества — М.: Физматлит, 2004. — 335 c.
Скачать (прямая ссылка): fizikadlyauglubleniyaizucheniya3stroenieisvoystva2004.pdf
Предыдущая << 1 .. 87 88 89 90 91 92 < 93 > 94 95 96 97 98 99 .. 151 >> Следующая


Флуктуации как отклонения от второго закона термодинамики.

Необратимый характер процессов перехода в состояние теплового равновесия, устанавливаемый вторым законом термодинамики, справедлив только для больших макроскопических систем. С термодинамической точки зрения изолированная система, пришедшая в состояние теплового равновесия, не может самопроизвольно выйти из этого состояния. Однако статистическая механика допускает существование флуктуаций, которые фактически представляют собой самопроизвольные отклонения системы от равновесия.

Как уже отмечалось, чем больше частиц в системе, тем меньше относительная величина флуктуаций любого макроскопического параметра, и для достаточно большой системы флуктуациями вообще можно пренебречь. Именно поэтому для таких систем справедлив второй закон термодинамики, в котором утверждается возрастание
208

V. ОСНОВЫ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ

энтропии в замкнутых системах. При статистическом определении энтропии второй закон утрачивает абсолютный характер и превращается в статистический закон: за каким-либо заданным состоянием замкнутой системы будут следовать состояния, более вероятные если не с необходимостью, то в подавляющем большинстве случаев.

В системах с небольшим числом частиц относительная величина флуктуаций велика, т. е. самопроизвольные отклонения какой-либо величины от ее среднего значения могут быть сравнимы с самим средним значением. Такая система часто самопроизвольно выходит из состояния равновесия, и второй закон термодинамики здесь неприменим. Характерный пример нарушения второго закона термодинамики в достаточно малых системах — броуновское движение, при котором взвешенная в жидкости макроскопическая частица получает кинетическую энергию от молекул окружающей среды, хотя температура среды не выше, чем температура самой броуновской частицы.

• Как статистическая механика объясняет необратимость реальных тепловых процессов?

• Приведите примеры явлений, в которых наблюдается самопроизвольный выход системы из состояния термодинамического равновесия.

• Почему упорядоченные состояния характеризуются меньшей вероятностью по сравнению с неупорядоченными?

д Статистическая гипотеза. Неизбежность тепловых процессов в природе приводит к тому, что статистическая механика систем многих частиц не исчерпывается законами обычной механики (хотя и опирается на них), а требует обязательного введения дополнительной статистической гипотезы в той или иной форме, например в виде предположения о равной вероятности различных микросостояний замкнутой системы.

Но в тех случаях, когда тепловые процессы оказываются несущественными, определенную информацию о свойствах термодинамической системы можно получить, опираясь только на механические представления. Тепловые процессы практически отсутствуют в условиях тепловой изоляции при наличии механического равновесия. В этих случаях протекающие явления обратимы и можно использовать модель адиабатического процесса.

Покажем, например, как можно получить уравнение адиабаты для одноатомного идеального газа, основываясь на существовании адиабатических инвариантов в механических системах. Напомним (см. кн. 1), что адиабатическим инвариантом называется характеризующая механическую систему величина, сохраняющаяся при медленном изменении внешних параметров. В частности, для шарика, упруго отражающегося от двух параллельных стенок, которые медленно сближаются или раздвигаются, адиабатическим инвариантом является произведение расстояния между стенками на модуль скорости шарика.
§ 25. ГАЗЫ, ЖИДКОСТИ, ФАЗОВЫЕ ПЕРЕХОДЫ

209

В механической модели идеального газа как совокупности одноатомных молекул, упруго отражающихся от стенок сферического сосуда, адиабатическим инвариантом при медленном изменении объема V сосуда будет произведение характерного линейного размера (радиуса) R сосуда на модуль v скорости молекулы. В отсутствие теплообмена такая механическая модель адекватно описывает реальный адиабатический процесс сжатия или расширения. При этом сохраняет свой смысл и указанный адиабатический инвариант: Rv = const. Поскольку радиус R пропорционален Vv, а модуль скорости v пропорционален V7, то

VV VT = const,

или

TV2,i = const.

Легко видеть, что это совпадает с полученным выше уравнением адиабаты в переменных Т и V для одноатомного идеального газа, поскольку в этом случае у = Ср/Сv = 5/3. А

• При каких условиях к системам из большого числа частиц применимы чисто механические представления, не опирающиеся на статистическую гипотезу?

• Получите уравнение адиабаты идеального газа, рассматривая сосуд цилиндрической формы, объем которого изменяется при медленном перемещении поршня.

§ 25. Газы, жидкости, фазовые переходы

Статистическая механика позволяет объяснить на основе некоторых моделей не только свойства вещества в газообразном состоянии, но и процессы перехода вещества из одного состояния в другое, в том числе фазовые превращения газ—жидкость, жидкость—твердое тело и т. д.
Предыдущая << 1 .. 87 88 89 90 91 92 < 93 > 94 95 96 97 98 99 .. 151 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed