Научная литература
booksshare.net -> Добавить материал -> Физика -> Бутиков Е.И. -> "Физика для углубленного изучения 3. Строение и свойства вещества" -> 65

Физика для углубленного изучения 3. Строение и свойства вещества - Бутиков Е.И.

Бутиков Е.И., Кондратьев А.С., Уздин В.М. Физика для углубленного изучения 3. Строение и свойства вещества — М.: Физматлит, 2004. — 335 c.
Скачать (прямая ссылка): fizikadlyauglubleniyaizucheniya3stroenieisvoystva2004.pdf
Предыдущая << 1 .. 59 60 61 62 63 64 < 65 > 66 67 68 69 70 71 .. 151 >> Следующая

а так как Су > 0, то отсюда немедленно следует Т, = Т2.

Таким образом, температура идеального газа при адиабатическом прохождении через змеевик не меняется, а совершаемая при этом работа, как видно из (5), равна нулю. Для того чтобы работа была отлична от нуля, необходим теплообмен. Легко убедиться, что, когда газ получает теплоту (Q > 0), совершаемая над ним работа отрицательна и, наоборот, при Q < 0 совершаемая над газом работа положительна: А > 0. Действительно, подставляя в уравнение первого закона (6) выражения (5) и (7), получаем

Q=(CV + R)(T2-Ti). (8)

Сумма Су + R равна молярной теплоемкости идеального газа при постоянном давлении Ср, поэтому формулу (8) можно записать и так:

Q = СР(Т2-Т1). (9)

Из этого выражения видно, что знак АТ = Т2 — Т1 совпадает со знаком Q. Если, например, Q < 0, т. е. газ при прохождении через змеевик отдает теплоту, то Т2 < Т{, и из выражения (5) видно, что совершаемая при этом над газом работа положительна: А > 0.

Змеевик как тепловая машина. Исходя из полученных результатов попытаемся представить себе, как происходит протекание газа через змеевик. Если в змеевике газ охлаждается, т. е. отдает теплоту (Q < 0), то совершаемая над газом работа положительна — внешние силы «проталкивают» газ через змеевик. Если теплота
§ 17. ПРИМЕРЫ ПРИМЕНЕНИЯ ПЕРВОГО ЗАКОНА ТЕРМОДИНАМИКИ

145

подводится к газу (Q > 0), то наш змеевик подобен тепловой машине — газ сам совершает работу над внешними телами. И обратите внимание, что этот результат не зависит от того, какова величина давления газа на выходе и на входе. Единственное условие при этом — давление на входе должно быть больше давления на выходе, иначе газ просто потечет в обратную сторону.

Как было выяснено, при адиабатическом протекании газа через змеевик совершаемая над ним работа равна нулю. Не кажется ли вам странным этот результат? Легко придумать такой опыт, в котором над газом работа совершается, а теплообмена с окружающей средой нет. Действительно, попробуем при помощи компрессора прокачивать через змеевик газ в вакуум. Для того чтобы процесс можно было считать стационарным, сечение выходного отверстия сделаем много меньше сечения входного. Змеевик теплоизолируем от окружающей среды.

Совершаемая компрессором над газом работа положительна и равна полной совершаемой над газом работе, ибо, как уже отмечалось, выходя в вакуум, газ работы не совершает. Так как нет обмена теплотой, налицо противоречие с утверждением о том, что при адиабатическом протекании работа равна нулю.

Это противоречие возникло потому, что при прокачивании газа в вакуум происходят и такие энергетические превращения, которые были совершенно несущественны в разобранном выше примере. Действительно, первый закон термодинамики использовался в виде Q + А = AU, где U — внутренняя энергия газа. Поэтому при использовании такой формулировки первого закона термодинамики заранее молчаливо предполагается, что в рассматриваемых процессах не происходит изменения механической энергии системы, т. е. не меняется потенциальная энергия газа как целого во внешнем поле, не меняется и кинетическая энергия движения газа как целого, не возникает в газе никаких макроскопических потоков. Теперь уже становится ясно, что при прокачивании газа в вакуум возникает макроскопический направленный поток, кинетическую энергию которого необходимо учитывать. Работа компрессора в этом случае как раз и определяет кинетическую энергию этого потока.

Если вход и выход змеевика расположены на разной высоте, то в уравнении закона сохранения энергии необходимо учитывать и изменение потенциальной энергии газа в поле тяжести, подобно тому как это делалось в гидродинамике при выводе уравнения Бернулли.

Измерение теплоемкости газа. Змеевик, помещенный в калориметр, можно использовать для измерения теплоемкости газа. Дело в том, что непосредственное измерение теплоемкости газа при постоянном объеме Су затруднительно, так как для заключенного в сосуд газа масса, а следовательно, и теплоемкость всегда малы по сравнению с их значениями для сосуда и калориметра. Через змеевик
146

IV. ОСНОВЫ ТЕРМОДИНАМИКИ

можно пропустить большую массу газа, так что температура воды в калориметре может заметно измениться. Таким образом удается преодолеть отмеченную выше трудность.

Зная теплоемкость калориметра с водой, по изменению его температуры можно подсчитать количество переданной газу теплоты Q (в пересчете на один моль прошедшего газа). Это количество теплоты связано с изменением температуры газа формулой (9), что позволяет рассчитать величину Ср — теплоемкость газа при постоянном давлении. Теплоемкость Су можно затем найти с помощью уравнения Майера: Cv = Ср — R.

Задача

В вертикальном цилиндрическом сосуде под массивным поршнем находится 1 моль идеального газа. Приложим к поршню некоторую силу и сожмем газ настолько, чтобы эта сила совершила заданную работу А. Затем поршень отпускаем и через некоторое время он устанавливается в новом положении равновесия. Определить, на сколько градусов температура газа в конечном состоянии отличается от начальной температуры, считая газ адиабатически изолированным.
Предыдущая << 1 .. 59 60 61 62 63 64 < 65 > 66 67 68 69 70 71 .. 151 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed