Научная литература
booksshare.net -> Добавить материал -> Физика -> Бутиков Е.И. -> "Физика для углубленного изучения 1. Механика" -> 136

Физика для углубленного изучения 1. Механика - Бутиков Е.И.

Бутиков Е.И., Кондратьев А.С. Физика для углубленного изучения 1. Механика — М.: Физматлит, 2004. — 350 c.
Скачать (прямая ссылка): fizikadlyauglublennogoizucheniya2004.pdf
Предыдущая << 1 .. 130 131 132 133 134 135 < 136 > 137 138 139 140 141 142 .. 149 >> Следующая


Обратим внимание на то, что в отличие от локализованных колебаний (осциллятор), где кинетическая и потенциальная энергии изменяются в противофазе (см. рис. 162 и 185), в бегущей волне колебания кинетической и потенциальной энергий происходят в одинаковой фазе. Кинетическая и потенциальная энергии в каждой точке среды одновременно достигают максимальных значений и одновременно обращаются в нуль. Равен-
320

IV. КОЛЕБАНИЯ И ВОЛНЫ

Рис. 200. Смещение частиц среды и плотность энергии в бегущей волне

ство мгновенных значений плотности кинетической и потенциальной энергий есть общее свойство бегущих волн, т. е. волн,

распространяющихся в определенном направлении. Можно убедиться, что это справедливо и для поперечных волн в натянутой гибкой струне.

До сих пор мы рассматривали волны, распространяющиеся в системе, имеющей бесконечную протяженность только по одному направлению: в цепочке маятников, в струне, в стержне. Но волны могут распространяться и в среде, имеющей бесконечные размеры по всем направлениям. В такой сплошной среде волны бывают разного вида в зависимости от способа их возбуждения.

Плоская волна. Если, например, волна возникает в результате гармонических колебаний бесконечной плоскости, то в однородной среде она распространяется в направлении, перпендикулярном этой плоскости. В такой волне смещение всех точек среды, лежащих на любой плоскости, перпендикулярной направлению распространения, происходит совершенно одинаково. Если в среде не происходит поглощения энергии волны, то амплитуда колебаний точек среды всюду одинакова и их смещение дается формулой (1). Такая волна называется плоской.

Сферическая волна. Волну другого вида — сферическую — создает в однородной изотропной упругой среде пульсирующий шар. Такая волна распространяется с одинаковой скоростью по всем направлениям. Ее волновые поверхности, т. е. поверхности постоянной фазы, представляют собой концентрические сферы. В отсутствие поглощения энергии в среде легко определить зависимость амплитуды сферической волны от расстояния до центра. Поскольку поток энергии волны, пропорциональный квадрату амплитуды, одинаков через любую сферу, амплитуда волны убывает обратно пропорционально расстоянию г от центра: А<*\/г. Уравнение продольной сферической волны имеет вид

x(t, г) = а у cos

где а — амплитуда колебаний на расстоянии г0 от центра волны.

• Как зависит переносимая бегущей волной энергия от частоты и от амплитуды волны?
§ 47. ИНТЕРФЕРЕНЦИЯ И ДИФРАКЦИЯ ВОЛН. ЭФФЕКТ ДОПЛЕРА

321

• Что такое плоская волна? Сферическая волна? Как зависят от расстояния амплитуды плоской и сферической волн?

• Объясните, почему в бегущей волне кинетическая энергия и потенциальная энергия изменяются в одинаковой фазе, а

§ 47. Интерференция и дифракция волн. Эффект Доплера

При одновременном распространении нескольких волн смещение частиц среды представляет собой векторную сумму смещений, которые имели бы место при распространении каждой волны в отдельности. Иначе говоря, волны просто накладываются одна на другую, не искажая друг друга. Этот экспериментальный факт был известен еще Леонардо да Винчи, который заметил, что круги волн на воде от разных источников проходят один сквозь другой и распространяются дальше, не претерпев никаких изменений. Утверждение о независимом распространении нескольких волн носит название принципа суперпозиции для волнового движения.

Мы уже рассматривали распространение в одном направлении двух одинаково поляризованных монохроматических волн с близкими частотами. В результате наложения таких волн получается почти синусоидальная волна с периодически меняющейся в пространстве амплитудой. «Моментальная фотография» такой волны выглядит как следующие друг за другом группы волн (см. рис. 197), а вызываемое волной колебание в какой-либо фиксированной точке имеет характер биений.

Когерентные волны. Особый интерес представляет случай сложения так называемых когерентных волн, т. е. волн от согласованных источников. Простейшим примером когерентных волн являются монохроматические волны одинаковой частоты с постоянной разностью фаз. Для истинно монохроматических волн требование постоянной разности фаз будет лишним, так как они являются бесконечно протяженными в пространстве и во времени и две такие волны одинаковой частоты всегда имеют постоянную разность фаз. Но реальные волновые процессы, даже близкие к монохроматическим, всегда имеют конечную протяженность. Для того чтобы такие квазимонохроматические волны, представляющие собой последовательности отрезков синусоидальных волн, были когерентными, требование постоянной разности фаз является обязательным. Строго говоря, понятие когерентности волн является более сложным, чем описано выше. Подробнее мы познакомимся с ним при изучении оптики.

Интерференционная картина. При сложении когерентных волн наблюдаются явления интерференции, заключающиеся в том, что
322

IV. КОЛЕБАНИЯ И ВОЛНЫ

вызываемая этими волнами картина колебаний является стационарной, т. е. в каждой точке происходят колебания с не зависящей
Предыдущая << 1 .. 130 131 132 133 134 135 < 136 > 137 138 139 140 141 142 .. 149 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed