Научная литература
booksshare.net -> Добавить материал -> Физика -> Бутиков Е.И. -> "Физика для поступающих в вузы" -> 65

Физика для поступающих в вузы - Бутиков Е.И.

Бутиков Е.И., Быков А.А., Кондратьев А.С. Физика для поступающих в вузы — Наука, 1982. — 610 c.
Скачать (прямая ссылка): fizikadlyapostupaushih1982.pdf
Предыдущая << 1 .. 59 60 61 62 63 64 < 65 > 66 67 68 69 70 71 .. 217 >> Следующая


Если бы температура газа была равна температуре окружающей среды, т. е. газ находился бы в тепловом равновесии с окружением, то никакой работы вообще получить было бы невозможно. Превращение внутренней энергии в механическую может происходить только в том случае, когда начальное состояние всей системы не является равновесным.

Но и при неравновесном начальном состоянии переход системы в состояние равновесия не обязательно сопровождается превращением внутренней энергии в меха- -ническую. Если просто привести газ в тепловой контакт с окружающей средой, не давая ему расширяться, то газ

Рис. 7.6. Процесс получения максимальной работы на р — К-диаг-рамме.

Рис. 7.5. К получению максимальной работы.
180

ОСНОВЫ ТЕРМОДИНАМИКИ

остынет и никакой работы при этом совершено не будет. Поэтому для возможности совершения работы необходимо предоставить газу возможность расширяться, имея в виду, что потом его придется сжать, так как по условию в конечном состоянии газ должен занимать тот же объем, что и в начальном. Для получения максимальной работы переход из начального состояния в конечное должен быть произведен обратимо. А это можно сделать, только используя адиабатические и изотермические процессы. Итак, газ следует адиабатически расширять до тех пор, пока его температура не станет равна температуре окружающей среды Т, а затем изотермически сжать при этой температуре до исходного объема (рис. 7.6). Совершаемая газом при адиабатическом расширении 1—2 работа, как видно из рисунка, больше той работы, которую придется совершить над газом при изотермическом сжатии 2—3. Максимальная работа, которую можно получить при переходе газа из состояния 1 в состояние 3, равна площади заштрихованного на рис. 7.6 криволинейного треугольника 1—2—3.

§ 8. Статистическая природа необратимости тепловых процессов

Термодинамический подход не позволяет вскрыть внутреннюю природу необратимости реальных процессов в макроскопических системах. Он только фиксирует факт необратимости во втором законе,, опираясь на эксперимент. Молекулярно-кинетический подход позволяет проанализировать причины такой необратимости реальных процессов и определенной направленности энергетических превращений в природе.

Рассмотрим с точки зрения молекулярно-кинетической теории модель гипотетического «вечного» двигателя второго рода, изображенную на рис. 8.1. Предположим, что этот «вечный» двигатель работает следующим образом: газ самопроизвольно собирается в левой половине цилиндра, после чего поршень подвигают вплотную к газу. При таком перемещении внешние силы работы не совершают, так как собравшийся в левой половине газ не оказывает давления на поршень. Затем подводим к газу тепло и заставляем его изотермически расширяться до прежнего объема. При этом газ совершает работу за счет подводимого тепла. После
$ 8. НЕОБРАТИМОСТЬ ТЕПЛОВЫХ nPQUECCOB

181

?

того, как поршень перейдет в крайнее правое положение, будем ждать, пока газ снова не соберется самопроизвольно в левой половине сосуда, и затем повторяем все снова. В результате получилась периодически действующая машина, которая совершает работу только за счет получения тепла от окружающей среды.

Молекулярно-кинетическая теория позволяет сразу объяснить, почему такое устройство ле будет работать. Как мы видели, вероятность того, что газ, содержащий большое числб молекул, хотя бы один раз самопроизвольно соберется в одной половине сосуда, ничтожно мала. И уж совершенно невозможно себе представить, чтобы это могло повторяться раз за разом по мере работы машины.

Теперь можно указать, какой смысл вкладывается в понятие необратимого процесса: процесс является необратимым, если обратный процесс в действительности почти никогда не происходит. Строгого запрещения для такого процесса нет — он просто слишком маловероятен, чтобы его можно было наблюдать на опыте. Так, рассмотренный пример «вечного» двигателя второго рода основывался на процессе самопроизвольной концентрации газа в одной половине сосуда. Такой процесс является обратным для процесса расширения газа в пустоту. Расширение газа в пустоту представляет собой один из наиболее ярких примеров необратимых процессов — обратный процесс в макроскопической системе никогда не наблюдался.

Таким образом, с точки зрения представлений молеку-лярно-кинетической теории второй закон термодинамики утверждает то, что в природе в макроскопических системах процессы развиваются в таком направлешш, когда менее вероятные состояния системы заменяются на более вероятные. Такая интерпретация второго закона термодинамики была впервые предложена Больцманом. При рассмотрении флуктуаций плотнорти идеального газа в § 4 было

Тепла

Рис, 8.1. Один из вариантов «вечного» дви-второго "рода.

гателя
182

ОСНОВЫ ТЕРМОДИНАМИКИ

выяснено, что состояния газа, при которых распределение молекул близко к равномерному, встречаются гораздо чаще, чем далекие от равновесия состояния с сильно неравномерным распределением молекул. Другими словами, состояния с неравномерным распределением молекул по объему, при которых число молекул в правой и левой половине сосуда сильно различается, имеют гораздо меньшую вероятность, чем состояния с почти равномерным распределением, близкие к равновесному. Итак, необратимый процесс приближения к равновесию — это переход к наиболее вероятному макроскопическому состоянию.
Предыдущая << 1 .. 59 60 61 62 63 64 < 65 > 66 67 68 69 70 71 .. 217 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed