Научная литература
booksshare.net -> Добавить материал -> Физика -> Априль Ж. -> "Оптическая голография " -> 19

Оптическая голография - Априль Ж.

Априль Ж., Арсено А., Баласубраманьян Н. Оптическая голография — М.: Мир, 1982. — 736 c.
Скачать (прямая ссылка): opticheskayagalografiyat21982.djvu
Предыдущая << 1 .. 13 14 15 16 17 18 < 19 > 20 21 22 23 24 25 .. 143 >> Следующая


BP

КЛ

Светоделитель, чувствительный , кполярижщшХ^_Г\

и

11 Опорный Уштывакяции) 1 пучок

Система оборачивающих линз

?V

V

U

ДД

ЭР

Ka

\ х /73

-ПС

МЛ

J

Угловой дефлектор на основе я-Н]03

ЭЗ

Ввод данных

CC

Лазер

//

ФПЛ

г\

VJ







JL

// // ФПЛ

fcWiV

і і

йта записи \J голограммы

Плоскость „ сопряженной голограммы

Считывание данных

М<Р

BP

координаты xytp в трехмерной оптической голо-

Рис. 7. Географическая запись ««, и считывание (б)

графической памяти. Обозначения элементов см. в подписи к рис. or w 428 - Г л. 10. Области применения

одной и той же плоскости с координатами ху внутри толстой среды для записи, причем для различных голограмм опорный пучок имеет разные направления. Эти голограммы обнаруживают очень сильную угловую селективность, обусловленную их объемной природой [22]; таким образом, для считывания голограммы необходимо, чтобы опорный пучок падал на нее внутри узкого углового коридора относительно угла Брэгга для данной голограммы. Освещение вне этого углового коридора вызывает быстрое падение интенсивности в восстановленном изображении. Кроме того, чем толще голограмма, тем уже становится угловой коридор, в котором возможно восстановление (см. п. 10.1.4.6). Суперпозиция многих голограмм в одном месте влечет за собой дополнительную проблему записи новых голограмм таким образом, чтобы последние не оказывали влияния на записанные ранее. Например, если в качестве трехмерной среды для записи голограммы использовать электрооптический кристалл ниобата лития, то данную проблему можно решить с помощью внешнего электрического поля [2]. При этом значительно возрастает чувствительность при записи, тогда как чувствительность при стирании остается неизменной и составляет меньшую величину. Таким образом, когда записывается новая голограмма, другие голограммы, расположенные в том же месте, стираются лишь незначительно. Кроме того, осуществлялось хранение множества голограмм на ниобате лития с помощью метода градиента температуры [32]. При этом благодаря возникающей асимметрии свойств удалось получить селекцию по записи и стиранию, требуемую для хранения наложенной голограммы. Данный метод позволил записать на ниобате лития, легированном 0,01% железа, 500 голограмм, каждую с дифракционной эффективностью более чем 2,5%. Проблема селективного стирания отдельной голограммы среди множества наложенных голограмм была решена путем записи добавочной голограммы, в которой показатель преломления изменяется таким образом, что нейтрализует голограмму-оригинал [17].

На рис. 7 схематически показано, как действует сложная система трехмерной голографической памяти, изображенная на рис. 6. На рис. 7, а иллюстрируется процесс записи с целью регистрации страницы данных в некотором объеме среды с координатами хуц>. При этом используется та же оптическая система, что и в двумерном случае, за исключением лишь дополнительного устройства отклонения, добавленного для того, чтобы менять угол падения опорного пучка на среду для записи голограммы. Оптическая система, так же как и в предыдущем случае, заставляет опорный и объектный пучки пересекаться в среде для хранения информации независимо от того, в какое место с координатами хуц> мы адресуем информацию (с помощью дефлекторов света). Таким образом, автоматическое слежение снова осуществляется с помощью оптического устройства. На рис. 7, б иллюстрируется процесс считывания в tO.l- NХранение цифровой информации

429

трехмерной голографической памяти. На этом рисунке показано, как восстанавливается голограмма, хранимая в объеме с координатами ху<р. Здесь все происходит точно так же, как и в двумерном случае, за исключением лишь того, что теперь каждому адресату с координатами ху соответствует множество угловых координат ср.

10.1.3. Компоненты оптической памяти

10.1.3.1. Источник света

В голографической системе памяти для обеспечения интенсивного коллимированного когерентного света требуется лазер. Он должен быть импульсным (возможно, с синхронизацией мод) или управляться внешним затвором с частотой порядка IO6 импульсов в секунду, причем каждый импульс используется с целью записи или считывания. Кроме того, в зависимости от среды для записи голограммы и от того, какие применяются процессы записи и считывания, лазер должен обеспечивать среднюю оптическую мощность в одномодовом режиме около 1 Вт. Большинство материалов для записи голограмм и фотодетекторов наиболее чувствительны в сине-зеленой области спектра. Поэтому в качестве источника света предпочтительно использовать аргоновый лазер, поскольку он дает интенсивные синюю (А=0,488 мкм) и зеленую (А=0,5145 мкм) линии излучения. Он также удовлетворяет необходимым требованиям к стабильности частоты и амплитуды, длине когерентности и надежности. Недостатками аргонового газового лазера являются его высокая стоимость (около 15 ООО долл.) и низкий КПД преобразования электрической мощности в оптическую (порядка 0,1%). Из твердотельных лазеров для систем голографической памяти наиболее приемлемым является NdiYAG-лазер с удвоением частоты (А=0,530 мкм). В импульсном режиме работы такой лазер может обеспечить очень высокую пиковую мощность (до IO8 Вт).
Предыдущая << 1 .. 13 14 15 16 17 18 < 19 > 20 21 22 23 24 25 .. 143 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed