Научная литература
booksshare.net -> Добавить материал -> Физика -> Анфилов Г.Б. -> "Бегство от удивлений. книга для юных любителей физики с философским складом ума" -> 72

Бегство от удивлений. книга для юных любителей физики с философским складом ума - Анфилов Г.Б.

Анфилов Г.Б. Бегство от удивлений. книга для юных любителей физики с философским складом ума — М.: Детская литература, 1974. — 288 c.
Скачать (прямая ссылка): begstvootudivleniy1974.djvu
Предыдущая << 1 .. 66 67 68 69 70 71 < 72 > 73 74 75 76 77 78 .. 96 >> Следующая


Но мне не до развлечений. В бытность блином я привык беспрерывно исследовать кривизну своего мира, и теперь меня тянет заняться тем же в пространстве.

Прежде всего я намереваюсь придумать способ облачения пустоты в «пифагоровы штаны» и примерки к ней «треугольной шляпы».

Как это сделать?

Вот легонькая задачка из школьной стереометрии.

От моего окна (на пятом этаже) до газетного киоска на противоположной стороне улицы «напрямую» S метров. По тротуару от моего дома с метров, Ь — ширина улицы, а— высоты моего окна. Требуется найти S, не мешая уличному движению — не протягивая из окна к киоску туго натянутой веревки, а вычислив это расстояние через a, b и с.

Решение наипростейшее: считаем, что стена дома составляет прямой угол с поверхностью тротуара, что переход через улицу перпендикулярен к ней самой, пренебрегаем кривизной земной поверхности и дважды применяем теорему Пифагора. Так добываем формулу:

S2 = а2 + б2 + с2.

Вышло очень похоже на теорему Пифагора, но уже не для плоскости, а для пространства. Для кратчайшего расстояния S, прокладываемого «через пустоту».

Разумеется, а, Ь и с можно менять, можно строить около расстояния 5 самые разнообразные прямоугольные треугольники. И по традиционной школьной геометрии квадрат расстояния во всех случаях будет равен сумме квадратов его трех взаимно перпендикулярных координатных отсчетов. Поэтому выражение теоремы Пифагора считается главным инвариантом евклидовой геометрии.

219 Очень хорошо. От метрики плоскости мы шагнули к метрике пространства. Но вот существенная тонкость.

Наше решение выглядит непогрешимым и единственно возможным. Однако оно предполагает самоочевидное, как кажется, условие: в пространстве существуют плоскости. Именно поэтому мы считали себя вправе дважды применить плоскую теорему Пифагора (она, как говорилось, годится в этом простейшем виде лишь для плоскостей).

На том же условии нетрудно доказать и другую теорему — о том, что не только в плоских, но и пространственных треугольниках сумма углов составляет два прямых. Раз уж, согласно Евклиду, через любые три точки пространства можно провести плоскость, то и любой пространственный треугольник обязан быть плоским. Но так ли обстоит дело в действительности? Будут ли впору «прямые» штаны и «прямая» шляпа реальному пространству?

Что ж, из всего этого следует как будто немудрящий рецепт облачения пустоты в «пифагоровы штаны» и «треугольную шляпу». Надо проделать измерения длин и углов в реальных пространственных треугольниках. И таким способом «испытать пространство на кривизну».

Обяачение пустоты

Ночью, чтобы не мешать уличному движению, я протягиваю веревку из своего окна к далекому киоску. Тщательно измеряю расстояние 5. Столь же точно измеряю длины a, b и с. Возвожу их в квадрат, складываю, сравниваю. Вышло подтверждение формулы

220 ;s = a2 + f>2+cs — значит, в пространстве, можно про-іести плоскости и прямые, значит, пространство плос-гое, евклидово.

Или так. Еду на Кавказ. Стягиваю тугими канатами 'ри горные вершины. Измеряю в этом треугольнике д\лы, складываю их. Получилось в сумме два прямых—¦ ;сть еще одно доказательство того, что пространство глоское.

Ну, а если эти эксперименты приведут к другим результатам? Если S2 не совпадет с а2+Ь2+с2? И сум-via углов кавказского треугольника не даст двух прямых? Очень нелегко, очень непривычно допустить подобное. Разум упрямо противится даже мысленно позволить столь странный итог пространственных измерений.

Однако вопреки протестам интуиции заставим себя вообразить, что расхождения все-таки обнаружились. Что это может значить?

Когда подобное случалось на поверхности, вывод был очевиден: поверхность имеет кривизну. А когда нарушения традиционной теоремы Пифагора объявятся в пустоте, резонно будет сказать, что это доказывает кривизну пространства. Прежде, будучи блином, я с помощью метрических теорем определял, какова моя поверхность, не сходя с нее. Теперь, став объемным геометром, я хочу совершенно аналогичным способом узнать, каково пространство: насколько и как оно искривлено. И снова —не выходя из него!

На сфере или седле я не мог построить плоскость и провести идеальную прямую линию. Вместо нее у меня выходили геодезические линии — прямейшие, но не прямые. Именно по ним шли кратчайшие расстояния между точками. Подобно этому, в кривом пространстве я не могу построить ни идеальной прямой, ни идеальной плоскости. Вместо плоскостей проведутся поверхности минимальной кривизны, а вместо прямых опять появятся геодезические линии — прямейшие, но не прямые. Однако изнутри, из пространства, непосредственно увидеть искривление его невозможно, потому что тамошние жители сделают кривыми все свои линейки и другие эталоны прямизны — подгонят их к располагающимся по геодезическим линиям световым лучам, натянутым нитям, путям инерционного полета тел, не подвержен-

221 ных действию сил, и т. д. Поверхности минимальной кривизны будут выглядеть плоскостями. Только исследования параллельных линий да метрические эксперименты помогут определить эту странную, почти невообразимую кривизну пустоты.
Предыдущая << 1 .. 66 67 68 69 70 71 < 72 > 73 74 75 76 77 78 .. 96 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed