Научная литература
booksshare.net -> Добавить материал -> Физика -> Абрикосов А.А. -> "Методы квантовой теории поля в статической физике" -> 25

Методы квантовой теории поля в статической физике - Абрикосов А.А.

Абрикосов А.А., Горьков Л.П., Ехиельвич Д.И. Методы квантовой теории поля в статической физике — М.: Физматгиз, 1962. — 446 c.
Скачать (прямая ссылка): metodikvantovoyteorii1962.djvu
Предыдущая << 1 .. 19 20 21 22 23 24 < 25 > 26 27 28 29 30 31 .. 129 >> Следующая


t>t',

о (г _ г/, t - о=г S і фі>0 (O)I2 ег (?'-?

(7.17)

Оператор ф+ (г) увеличивает число частиц на единицу. Ввиду этого суммирование по s при t > f происходит по состояниям с числом частиц N-1-1. Наоборот, суммирование по s' при t < Z' происходит по состояниям с числом частиц N—1. Введем обозначения

Es-E0(N) = Es + ^, (7.18)

где

Bs = Es-E0(N+l) (7.19)

— энергия возбуждения системы, которая по определению положительна, а = E0(NI)— E0(N) — химический потенциал при T= 0. Аналогичным образом

Es,-E0(N) = Es.-E0(N-I)—

-[E0(N)-E0(N-I)] = Bs.-^. (7.18')

Величины Ss' И fj/ в последней формуле относятся к системе из N—1 частиц. Можно, однако, считать, что Ss = Bs., (A = Jj,'. Это вносит погрешность лишь порядка 1 /N. Далее, введем функции

Л (р, Е)dE = (2u)321 фа»(0) I2 8 (р-ps), E<Bs<E+dE,

S

В(р, Е) dE = (2тт)3 2 I Ivo(0) I2 § (/> -\~PS), E < es> < E ±dE.

__(7.20)

') Это следует из того, что согласно квантовой механике (см. [15], стр. 58), оператор пространственного переноса равен е1рг (р — оператор импульса). Следовательно, ф (г) = e~lpr<\i (0) е1рт.

Отметим кстати, чго если выразигь ф (г) в виде ф (г) = —L ^P1 a е рг

Y у ** р '

то, очевидно, получится флпг (0) = — («- pnm)nm. 82- методы квантовой теории поля при T=O [гл. ii

Разложим теперь функцию G в интеграл Фурье 1^-

OO

.) = /^(^? + ^?}. С7.21,

Коэффициенты А и В в этой формуле действительны и положительны. С помощью представления (7.21) можно исследовать аналитические свойства функции G (р, ш).

Выделяя действительную и мнимую части функции G, находим:

со

*<,(,. .0-^,4?? + ,???}. (7.22)

О

— кА (р, и>—и.), ш > и,,

О, ч (7-23)

яв(р, p-<и), cu < ja

j- означает главное значение интеграла^. Таким образом,

мнимая часть гриновской функции меняет знак при ш = jj.. Сравнивая (7.23) и (7.22), можно найти следующее соотношение, связывающее между собой действительную и мнимую части:

ReG (р, (O) = I fImG(P' (7.24)

— со

Из формул (7.21) и (7.20) можно получить асимптотическую формулу для G при <и->оо:

О (p. n)->±fdElA(p. Е) + В(р, E)] =

I fe (O) I2 8 (/;-/>,)+

+ (203 2 I ^'о(0)|2 8 (P+Ps0



S'

') Формула такого типа была впервые получена Леманом [27] в квантовой теории поля. § 7J ГРИНОВСКАЯ ФУНКЦИЯ

83

Нетрудно увидеть, что коэффициент при 1/(0 равен фурье-ксмпоненте от антикоммутатора

Ф С) СО + (г') ф (г) = S (г — г'),

т. е. единице. Для этого достаточно усреднить антикоммутатор по основному состоянию (отчего его значение не изменится), преобразовать полученное среднее аналогично формуле (7.17) и взять фурье-компоненту по г — г'. Таким образом, получаем:

G(p, ш)—при ш->со. (7.21')

Выясним свойства G как функции комплексной переменной со. Из формулы (7.24) следует, что функция G(p, ш) не является аналитической. У функции, аналитичной в верхней полуплоскости, связь между действительной и мнимой частями выражается соотношением, отличающимся от (7.24) заменой sign(io' — [).) на единицу. У функции, аналитичной В нижней полуплоскости, вместо sign(o)'-fJ.) стоит —1.

Рассмотрим наряду с G две функции Gr и Ga, анали-тичные, соответственно, в верхней и нижней полуплоскостях, определив их соотношениями (при вещественных ш)

Re G = Re Gr = Re Ga, Im Gr= Im G sign (ш — [х), (7.25)

Im Ga = — ImG sign (со — [х).

Из (7.25) следует, что на действительной полуоси ш — [х < О Gr совпадает с О*; соответственно, Ga совпадает с G* при ш — (л > 0. Таким образом, мы можем написать:

f G (р, со), ш>р, ( G*(p, ш), ш>ц, (7,25)

0^ "И О (р. «о). «о<,.

Из (7.25') следует, что Gr является аналитическим продолжением О с полуоси W > [л, a Ga — продолжением О с полуоси 0) < (X. О при />/',

: <ф+ (лг'> ф (лг) -+-ф (дг) (лг')> при t<t'.

84- методы квантовой теории поля при T=O [гл. ii

В координатном представлении функции Gr и Ga определяются следующим образом:

J —*($(*)$+(*')+ ?+(*0?(*)> при />/'.

Gp (х—х ) = і п .si,

R 4 ' [ 0 при t Ct',

Од (*-*') = {

(7.26)

Действительно, проделывая те же операции, какие применялись при выводе (7.21), получаем:

OO

о*.

о

GA(p, w) = G*k(p, (о).

Сравнивая действительную и мнимую части Gr и Ga с формулами (7.22) и (7.23), легко увидеть, что эти функции удовлетворяют соотношениям (7.25). Функции Gr и Ga называют запаздывающей и опережающей гриновскими функциями.

Теперь перейдем к фононам. Оператор поля фононов действителен, т. е. ср (х) = х(х) + х+ (•*¦)• Кроме того, надо учесть, что химический потенциал |Х = 0 (см. § 1) и в основном состоянии частицы отсутствуют. Аналогично предыдущему находим:

D (г-г', t—t') =

-'21 Xos(O)I2(<_<V** (r~r,), t > t>,

s (7.28)

- і 2 I Xos (O) I2 (<_< V ik° (r-r'>, t < f.

S

Введем функцию

P (k, E) dE = (2it)3 2 I Xoi (O) I2 8 (k - ks) =

= (2*)3 2 I Xo,(0)|2S(A+As). і

где суммирование по s относится к таким состояниям, энергия которых Es находится в пределах E < Es — E0 < E-\-dE. § 7] гриновская функция 85

Разлагая (7.28) в интеграл Фурье, получаем:
Предыдущая << 1 .. 19 20 21 22 23 24 < 25 > 26 27 28 29 30 31 .. 129 >> Следующая
Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed