Научная литература
booksshare.net -> Добавить материал -> Физика -> Абрагам А. -> "Время вспять или физик, физик где ты был" -> 171

Время вспять или физик, физик где ты был - Абрагам А.

Абрагам А. Время вспять или физик, физик где ты был — М.: Наука , 1991. — 391 c.
Скачать (прямая ссылка): vremyavspyatilifizikgdetibil1991.djvu
Предыдущая << 1 .. 165 166 167 168 169 170 < 171 > 172 173 174 175 176 177 .. 183 >> Следующая


Хочу привести обратный пример двух искусных и честных экспериментаторов, которые однако известности не добились. Фриц Лондон предсказал, что в сверхпроводнике магнитный поток принимает только квантованные значения, множители элементарного кванта (hc/e). В 1961 году два немецких физика наблюдали квантование магнитного потока, но измеренный ими квант был меньше половины (hc/e) (около 40%). После тщетных попыток найти грубую ошибку в калибровке своих измерений они решились опубликовать этот непонятный результат. Между тем в том же номере "Physical Review Letters" Янг (C.N. Yang) показал, что ввиду существования, так называемых, куперовских пар, на которых зиждется современная теория сверхпроводимости, заряд е в формуле магнитного кванта должен быть удвоен. Новое значение кванта - (hc/2e), т.е. в два раза меньше, чем предполагалось раньше, и в пределе экспериментальных погрешностей совпадает с результатом немецких ученых. Никто, в том числе и я, ре помнит их имен. Несправедливо!

А вот еще маленькая история, связанная с "высокомерным авторитетом эксперимента". В 1923 году, за двадцать три года до открытия ЯМР, немецкий физик Отто Штерн решил измерить магнитный момент протона, пользуясь методом молекулярных пучков - не легкий эксперимент по тем временам. Узнав об его намерении, Паули объявил: "Бесполезный эксперимент. Что, кроме ядерного магнетона, надеется найти этот Dummkopf (глупец)?" (На это словечко Паули всегда был довольно щедр.) "Думкопф" нашел почти в три раза больше, чем ядерный магнетон.

Хочу теперь, хотя я сам не специалист, описать кратко несколько этапов в развитии квантовой электродинамики. Я выбрал этот пример потому, что близкое сотрудничество теории и эксперимента редко выступает так ярко, как в постройке этого замечательного здания современной физики, а также потому, что именно на эту область науки обрушились наименее снисходительные комментарии господина Тома.

В конце двадцатых годов формализм квантовой физики, в том числе и электродинамики, был хорошо установлен. Умели подсчи- 364

Рощи академии

тывать все процессы обмена энергии между материей и излучением. Точнее, умели их подсчитать в самом низшем порядке теории возмущений, чего в большинстве случаев было вполне достаточно ввиду малой величины (1/137) константы связи между материей и излучением. Но когда попробовали улучшить точность, подсчитывая члены более высокого порядка, результат всегда был одним и тем же: расходящиеся интегралы и бесконечности. В течение пятнадцати лет целая армия выдающихся теоретиков - Гейзенберг, Паули, Дирак, Борн, Вайскопф, Бете, Гейтлер и многие другие -тщетно пытались очистить теорию от проклятых бесконечностей. Была ли "какая-то в державе датской гниль" ?

Неожиданно вывел всех из тупика эксперимент Уиллиса Лэмба в 1947 году. Пользуясь радиочастотной техникой, он обнаружил, что первые два возбужденных уровня водородного атома, на расстоянии десятка электрон-вольт от основного уровня, которые согласно точной теории Дирака должны были совпадать друг с другом, на самом деле были расщеплены на несколько микроэлектрон-вшьт. Почти одновременно с этим другой экспериментатор - Поликарп Каш - нашел другое отклонение от теории Дирака: гиромагнитное отношение электрона отличалось от двух приблизительно на одну тысячную.

Теоретики быстро убедились в том, что эти отклонения объяснялись вакуумными флуктуациями излучения и материи, которые рассматривались и прежде, но до сих пор всегда приводили к бесконечным результатам. Теперь, благодаря результатам Лэмба и Каша, теоретики знали, что эффекты флуктуации реальны, что они измеримы и малы. Последнего следовало ожидать ввиду малой величины константы связи. Менее чем в три года благодаря усилиям Швингера, Фейнмана, Томанаги и Дайсона, появился на свет так называемый метод ренормгруппы, который позволил при расчете любой физической величины однозначно изолировать расходящиеся части интегралов всех порядков по константе связи, выделяя в результате вычисления ее конечную часть, которую можно было сравнить с результатами эксперимента.

Как известно, замечательное изобретение Фейнмана, так называемый метод диаграмм позволило представить наглядно и записать все члены любого порядка п. Когда порядок п увеличивается, число членов этого порядку растет, величина их уменьшается, а вычисление каждого члена быстро усложняется. Оправдывает подсчет членов высокого порядка, несмотря на их очень малую величину и на очень большую сложность, воистину умопомрачительное согласие теории с экспериментом. Такое согласие доказывает одновременно и правильность метода ренормгруппы как метода вычислений, и способность теории описывать физическую реаль- Рощи академии

365

ность. Я не сомневаюсь, что метод ренормгруппы легко мог бы быть открыт на десять лет раньше. Теоретикам, которых я только что назвал, вполне хватало и математического искусства и воображения. Чего им не хватало, так это уверенности, что квантовая электродинамика правильно описывает действительность. Только эксперимент мог им дать и дал эту уверенность. Они узнали, что "гнили" никакой не было, и после этого легко спасли "державу".
Предыдущая << 1 .. 165 166 167 168 169 170 < 171 > 172 173 174 175 176 177 .. 183 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed