Научная литература
booksshare.net -> Добавить материал -> История -> Афанасьев В.А. -> "Экспериментальная отработка космических летательных аппаратов" -> 45

Экспериментальная отработка космических летательных аппаратов - Афанасьев В.А.

Афанасьев В.А. , Барсуков B.C., Гофин М.Я., Захаров А.Н., Стрельченко, Н.П. Экспериментальная отработка космических летательных аппаратов. Под редакцией Холодкова Н.В. — М.: МАИ, 1994. — 412 c.
ISBN 5-7035-0318-3
Скачать (прямая ссылка): experokla1994.djvu
Предыдущая << 1 .. 39 40 41 42 43 44 < 45 > 46 47 48 49 50 51 .. 149 >> Следующая

2кН Щ
Варьируя эти величины, можно получить различные перегрузки. Во втором варианте (рис. 2.53, б) стенд работает по методу сбрасывания.
125
Рис. 2.53. Схемы ударных стендов, использующих силы земного тяготения: а - стенд для испытаний на периодические ударные нагрузки: (1 - стол; 2 - объект испытаний; 3 - кулачок; 4 - тормозное устройство); б - стенд для испытаний на одиночные ударные нагрузки (1 - устройство для подъема каретки (платформы); 2 - скользящая рама; 3 - каретка (платформа); 4 - объект испытаний; 5 - соударяющиеся поверхности тормозного устройства)
Испытательные стенды, использующие гидравлический либо пневматический привод для разгона каретки, практически не зависят от действия гравитации. На рис. 2.54 показаны два варианта ударных пневматических стендов.
Принцип работы стенда с пневмопушкой (рис. 2.54, а) заключается в следующем. В рабочую камеру 7 подается сжатый газ. При достижении заданного давления, которое контролируется манометром, срабатывает автомат 2 освобождения контейнера 5, где размещен испытуемый объект. При выходе из ствола 4 пневмопушки контейнер контактирует с устройством 5, которое позволяет измерять скорость движения контейнера. Пневмопушка через амортизаторы крепится к опорным стойкам б. Заданный закон торможения на амортизаторе 7 реализуется за счет изменения гидравлического сопротивления перетекающей жидкости 9 в зазоре между специально спрофилированной иглой 8 и отверстием в амортизаторе 7.
Конструктивная схема другого пневматического ударного стенда (рис. 2.54, б) состоит из объекта испытаний 7, каретки 2, на которой установлен объект испытаний, прокладки 3 и тормозного устройства 4, клапанов 5, позволяющих создавать заданные перепады давления газа на поршне б, и системы подачи газа 7. Тормозное устройство включается сразу же после соударения каретки и прокладки, чтобы предотвратить обратный ход каретки и искажение форм ударного импульса. Управление такими стендами может быть автоматизировано. На них можно воспроизвести широкий диапазон ударных нагрузок.
В качестве разгонного устройства могут быть использованы резиновые амортизаторы, пружины, а также, в отдельных случаях, линейные асинхронные двигатели.
126
Рис. 2.54. Схемы ударных стендов с пневмоприводами
Возможности практически всех ударных стендов определяются конструкцией тормозных устройств:
1. Удар испытуемого объекта с жесткой плитой характеризуется торможением за счет возникновения упругих сил в зоне контакта. Такой способ торможения испытуемого объекта позволяет получать большие значения перегрузок с малым фронтом их нарастания (рис. 2.55, а).
2. Для получения перегрузок в широком диапазоне, от десятков до десятков тысяч единиц, с временем нарастания их от десятков микросекунд до нескольких миллисекунд используют деформируемые элементы в виде пластины или прокладки, лежащей на жестком основании. Материалами этих прокладок могут быть сталь, латунь, медь, свинец, резина и т.д. (рис. 2.55, б).
3. Для обеспечения какого-либо конкретного (заданного) закона изменения лихв небольшом диапазоне используют деформируемые элементы в виде наконечника (крешера), который устанавливается между плитой ударного стенда и испытуемым объектом (рис 2.55, в).
4. Для воспроизведения удара с относительно большим путем торможения применяют тормозное устройство, состоящее из свинцовой, пластически деформируемой плиты, расположенной на жестком основании стенда, и внедряющегося в нее жесткого наконечника соответствующего профиля (рис. 2.55, г), закрепленного на объекте или платформе стенда. Такие тормозные устройства позволяют получать перегрузки в широком диапазоне п(1) с небольшим временем их нарастания, доходящим до десятков миллисекунд.
127
Рис. 2.55. Схемы тормозных устройств для ударных стендов
5. В качестве тормозного устройства может быть использован упругий элемент в виде рессоры (рис. 2.55, д)у установленной на подвиж-. ной части ударного стенда. Такой вид торможения обеспечивает получение относительно малых перегрузок полусинусоидальной формы с продолжительностью, измеряемой миллисекундами.
6. Пробиваемая металлическая пластина, закрепленная по контуру в основании установки, в сочетании с жестким наконечником платформы или контейнера, обеспечивает получение относительно малых перегрузок (рис. 2.55, е).
7. Деформируемые элементы, установленные на подвижной платформе стенда (рис. 2.55, ж), в сочетании с жестким коническим уловителем обеспечивают получение длительно действующих перегрузок с временем нарастания до десятков миллисекунд.
8. Тормозное устройство с деформируемой шайбой (рис. 2.55, з) позволяет получать большие пути торможения объекта (до 200 — 300 мм) при малых деформациях шайбы.
9. Создание в лабораторных условиях интенсивных ударных импульсов с большими фронтами возможно при использовании пневматического тормозного устройства (рис. 2.55, и). К числу достоинств пнефмодемпфера следует отнести его многоразовое действие, а также возможность воспроизведения ударных импульсов различной формы, в том числе и со значительным заданным фронтом.
Предыдущая << 1 .. 39 40 41 42 43 44 < 45 > 46 47 48 49 50 51 .. 149 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed