Научная литература
booksshare.net -> Добавить материал -> Геотектоника -> Хаин В.Е. -> "Геотектоника с основами геодинамики" -> 55

Геотектоника с основами геодинамики - Хаин В.Е.

Хаин В.Е., Ломизе М.Г. Геотектоника с основами геодинамики: Учебник — М: Изд-во МГУ, 1995. — 480 c.
Скачать (прямая ссылка): hain1995geotek-osn-geod.doc
Предыдущая << 1 .. 49 50 51 52 53 54 < 55 > 56 57 58 59 60 61 .. 194 >> Следующая

Векторы горизонтального движения литосферных плит могут быть ориентированы как под прямым, так и под острым углом к желобу. В последнем случае направленные вкрест простирания желоба составляющие этих векторов равны: vusin?, v0sin? где ?,? - углы между вектором и простиранием желоба. Сумма этих двух составляющих представляет собой скорость конвергенции плит вкрест простирания желоба. Полная величина скорости конвергенции плит определяется вектором v, полученным от сложения vu с v0 и ориентированным под соответствующим углом к простиранию желоба. Прочие векторы смещения (vs, vt, vb) поясняются в подрисуночной подписи и выражают относительные горизонтальные движения у главного контакта в желобе и на границе, отделяющей надвигающуюся литосферную плиту от ее фронтальной части. При косоориентированной субдукции вдоль этой границы развиваются продольные сдвиги, как это происходит, в частности, вдоль Зондской дуги.
При высоких скоростях движения верхней плиты, а также там, где субдуцирует относительно легкая или утолщенная океанская литосфера, верхняя плита наступает за линию шарнира нижней плиты и перекрывает ее (v0sin? > vr). Образуется очень пологая приповерхностная часть зоны Беньофа, характерно выраженная центральным отрезком Анд. В обеих литосферных плитах появляются напряжения и структуры сжатия.
Напротив, там, где субдуцирует древняя и тяжелая литосфера, возможны условия, при которых висячее крыло отстает в своем движении от откатывания шарнира (v0sin? < vr). Соответствующее зияние реализуется по ослабленным зонам над поверхностью субдукции, где раскрываются задуговые или внутридуговые бассейны. Это определяется вектором относительного смещения фронтальной части надвигающейся литосферной плиты (vb). Рассмотренная кинематическая модель предусматривает, наряду с понятием скорость конвергенции (v), также и понятие скорость субдукции (vm) как результат суммирования в вертикальной плоскости двух векторов, упоминавшихся выше: vu (скорость скольжения пододвигающейся плиты на наклонном отрезке траектории, т. е. за линией шарнира) и vg (скорость гравитационного опускания этой плиты в астеносферу). Следовательно, вектор скорости субдукции ориентирован под большим углом к горизонту, чем наклон погружающейся плиты. Такая скорость субдукции (vm=vu+vg) определяет направление и скорость погружения нижней литосферной плиты в мантию (т. е. ее "абсолютное" движение) и вычисляется без учета движений верхней литосферной плиты.
Между тем в работах по геотектонике под скоростью субдукции обычно понимают один из параметров относительного движения литосферных плит, а именно скорость их конвергенции вкрест простирания желоба (см. табл. 6.1). Величину vm в отличие от скорости субдукции лучше называть скоростью погружения.
Правило ортогональности субдукции. Давно замечено, что конвергенция литосферных плит при субдукции происходит в направлении, секущем простирание желоба под большим углом. К. Скотиз и Д. Роули уточнили это статистически. Оказалось, что угол относительно желоба в 80% случаев превышает 60° (рис. 6.20). Если определять направление конвергенции не по координатам полюса вращения, а непосредственно по решениям фокального механизма сейсмических очагов в верхах зоны Беньофа. то угол, превышающий 60°, наблюдается более чем в 90% случаев. Таким образом, эмпирически установлена приблизительная ортогональность субдукции относительно конвергентной границы. Расчетами показано, что фрикционное сопротивление субдукции минимально при относительном угле 90° и нарастает по мере уменьшения угла до 45°. В этом усматривают динамическое обоснование ортогональности субдукции. Как полагают, при постепенном повороте висячего крыла зоны субдукции (а значит, и конвергентной границы плит) должно соответственно изменяться и направление субдукции, что документируется формированием океанской литосферы с веерообразным рисунком линейных магнитных аномалий (например, на отрезке Восточно-Тихоокеанского хребта между разломами Ривера и Клиппертон, где шло приспособление к ориентировке Центральноамериканского желоба).

Рис. 6.20. Правило ортогональности субдукции к простиранию глубоководного желобa. Слева - система активных зон спрединга и трансформных разломов востоке Тихого океана, обеспечивающая приблизительную ортогональность субдукции: она формировалась и перестраивалась в соответствии со сложной, менявшейся конфигурацией и ориентировкой активных континентальных окраин Америки. Справа - гистограммы, по К. Скотизу и Д. Роули (1985), позволяющие судить об углах между направлением конвергенции литосферных плит и простиранием глубоководного желоба в большинстве современных зон субдукции. Для гистограммы I направления конвергенции определены по координатам полюсов вращения, для гистограммы II - непосредственно по решениям фокального механизма сейсмических очагов верхней части зон Беньофа.
1 - глубоководные желоба (зоны субдукции); 2 - направление и скорость (см/год) конвергенции литосферных плит в зонах субдукции, представленные вектором движения океанской плиты относительно континентальной окраины; 3 - активные зоны спрединга; 4 - отмершие зоны спрединга; 5 - трансформные разломы и сдвиги. Литосферные плиты: Т - Тихоокеанская; Р - Ривера; К - Кокос; Н - Наска; А - Антарктическая; СА - Северо-Американская; Кб - Карибская; ЮА - Южно-Американская
Предыдущая << 1 .. 49 50 51 52 53 54 < 55 > 56 57 58 59 60 61 .. 194 >> Следующая

Реклама

Www.growboom.ru

www.growboom.ru

growboom.ru

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed