Научная литература
booksshare.net -> Добавить материал -> Химия -> Мельников Б.Н. -> "Применение красителей" -> 27

Применение красителей - Мельников Б.Н.

Мельников Б.Н., Виноградова Г.И. Применение красителей — М.: Химия , 1986. — 240 c.
Скачать (прямая ссылка): primeneniekrasiteley1986.djvu
Предыдущая << 1 .. 21 22 23 24 25 26 < 27 > 28 29 30 31 32 33 .. 107 >> Следующая

В подавляющем большинстве известных технологических процессов крашения различных волокнистых материалов взаи-
58
модействие красителя с полимером происходит с выделением тепла. Это означает, что при повышении температуры процесса адсорбционное равновесие
В+Кр^В-Кр
будет сдвигаться влево, т. е. в сторону понижения накрашивае-мости. С повышением температуры снижается также значение Дц°.
Все сказанное относится только к такому процессу крашения, который доведен до состояния равновесия, когда при длительном времени пребывания волокна в красильной ванне скорости адсорбции красителя волокном и десорбции его из волокна выравниваются. В реальных же процессах крашения, когда волокно находится в красильном растворе в течение очень ограниченного времени, состояние равновесия практически никогда не достигается, и влияние температуры на результаты крашения может проявляться по-разному в зависимости от степени удаленности процесса от состояния равновесия. Чаще всего в реальных процессах крашения, особенно если они проводятся по непрерывной схеме, повышение температуры приводит не к понижению, а к возрастанию накрашиваемости волокнистых материалов. Происходит это потому, что повышение температуры одновременно сказывается как на адсорбционной, так и на диффузионной стадиях общего физико-химического цикла крашения. Под влиянием температуры эффективность адсорбции снижается, скорость же диффузии резко возрастает, и если процесс сильно удален от состояния равновесия, то накрашивае-мость волокна увеличивается.
Как отмечалось ранее, гидрофильные органические растворители и текстильно-вспомогательные вещества сольватируют молекулы или ионы красителя, что затрудняет их адсорбционное взаимодействие с волокном. В результате этого как и при повышении температуры адсорбционное равновесие смещается влево, уменьшается сродство красителя к волокну и снижается равновесная накращиваемость. Если же процесс крашения не доведен до состояния равновесия, то в зависимости от концентрации вспомогательных веществ в красильном растворе можно наблюдать либо повышение, либо понижение накрашиваемости.
В отличие от действия температуры, гидрофильных растворителей и текстильных вспомогательных веществ введение в красильную ванну электролитов приводит к смещению адсорбционного равновесия вправо. Это наблюдается при крашении целлюлозных волокон прямыми и некоторыми другими красителями. Однако при большом избытке электролита в красильной ванне происходит ассоциация красителя, которая тем выше, чем ниже температура крашения. Поэтому эффективность адсорбции и общая накращиваемость волокна возрастают при небольшом содержании электролита в растворе и уменьшаются при
59
таких его концентрациях, когда начинается ассоциация молекул или ионов красителя и замедляется вследствие этого их диффузия в волокно.
Важно отметить, что хотя равновесное распределение красителя между волокном и раствором и смещается под действием электролита в сторону волокна, сродство красителя к волокну при этом практически не изменяется. Это обусловлено тем, что наличие нейтральной соли в красильной ванне увеличивает концентрацию ионов натрия как в растворе, так и в волокне. В результате возрастают соответствующие значения активности красителя в волокне и растворе (см. уравнения 5, 6), отношение же их и, следовательно, значения К и A(i° практически не изменяются.
Влияние температуры, гидрофильных органических растворителей, текстильных вспомогательных веществ и электролитов на общие результаты крашения будут рассмотрены при описании физико-химической сущности технологических процессов крашения конкретных волокнистых материалов красителями различных классов.
Зависимость сорбции красителя волокном от температуры чаще всего характеризуется тепловым эффектом и изменением энтропии этого процесса. Тепловой эффект с определенными ограничениями характеризует прочность связи красителя с функциональными группами волокнообразующего полимера. Эти ограничения обусловлены тем, что тепловой эффект адсорбции включает не только те тепловые изменения в системе, которые соответствуют образованию какой-либо связи между красителем и полимером, но и ряд других составляющих, таких, как тепловой эффект дегидратации волокна и молекул или ионов красителя, разрыва межмолекулярных связей в волокне, ассоциации и распада ассоциатов красителей.
Для расчета тепловых эффектов адсорбции красителей волокнистыми материалами (АН°) в процессах крашения чаще всего используют зависимость (в дифференциальной форме) константы равновесия или сродства от температуры (уравнение 19).
После интегрирования уравнения (19) при допущении, что тепловой эффект не зависит от температуры, получим уравнение (20).
где Afj(° и Д(х2°—сродство красителя к волокну соответственно при температурах крашения Г| и Г2.
(20)
60
По значениям сродства красителя к волокну и теплового эффекта адсорбции можно вычислить изменение энтропии AS° (уравнение 21).
—Дц° = ДЯ° — TAS° (21}-
Стандартная энтропия крашения характеризует изменение упорядоченности в красильной системе при переходе одного моля красителя в фазу волокна из внешней фазы раствора. В растворе молекулы или ионы красителя гидратированы или сольватированы, но могут свободно перемещаться во всех направлениях и вращаться. Они находятся в состоянии беспорядочного распределения, т. е. в наиболее вероятном состоянии. Попадая в волокно и находясь в адсорбированном состоянии, молекулы красителя располагаются более или менее ориентированно и имеют значительно меньшую свободу движения, что отрицательно сказывается на запасе их кинетической энергии
Предыдущая << 1 .. 21 22 23 24 25 26 < 27 > 28 29 30 31 32 33 .. 107 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed