Научная литература
booksshare.net -> Добавить материал -> Химия -> Дорош А.К. -> "Производство спиртных напитков. Сырье, аппараты, технологии получения спирта и водки" -> 95

Производство спиртных напитков. Сырье, аппараты, технологии получения спирта и водки - Дорош А.К.

Дорош А.К., Лисенко B.C. Производство спиртных напитков. Сырье, аппараты, технологии получения спирта и водки — K.: Либідь, 1995. — 272 c.
ISBN 5-325-00756-6
Скачать (прямая ссылка): dorosh.djvu
Предыдущая << 1 .. 89 90 91 92 93 94 < 95 > 96 97 98 99 100 101 .. 118 >> Следующая


В окончательном результате получают очень концентрированную сивушную эссенцию, которую можно утилизировать в парфюмерном производстве, превращая ее в ароматические эфиры. Нижние слои жидкости, представляющие собой смесь соляных растворов с этиловым спиртом, поступают в простой перегонный аппарат для отгонки алкоголя, который получается при этом в чистом виде. Что же касается солей, остающихся от дистилляции, то они могут служить для следующих операций. Кроме поташа и сернокислого аммония, для очищения спирта по описанному способу можно употреблять многие другие соли... Все эти вещества имеют свойство выделять сивушные примеси спирта в верхний слой. Порядок процесса и температура при этом не изменяются. При употреблении материалов щелочного характера происходит отчасти и химическое очищение, именно нейтрализация содержащихся в растворе кислот, но главный результат достигается здесь во всяком случае механическим путем."

7.6.2. Химические методы очистки

Химические методы очистки основаны на химическом взаимодействии между молекулами примеси и вносимого в водно-спиртовый раствор химического реактива, в результате чего образуются новые вещества. Если бы образовавшиеся вещества были нерастворимыми и (или) нелетучими, а очищающий реактив взаимодействовал только с определенной примесью (или группой примесей) и не взаимодействовал с основным компонентом — этиловым спиртом, то такой метод очистки был бы идеальным. Однако на практике это недостижимо, так как в большинстве случаев многие примеси по химическим свойствам близки между собою и к этиловому спирту. Кроме того, диапазон действия реактивов широк; их частицы взаимодействуют как с молекулами нейтрализуемой примеси и родственными ей, так и с молекулами примесей других групп, а также и с этиловым спиртом, а образовавшиеся новые вещества во многих случаях растворимы и летучи. Новые вещества, образующиеся при нейтрализации той или иной примеси, являются новыми примесями. И хотя некоторые из них улучшают органо-лептические показатели водно-спиртового раствора, но могут оказаться не менее ядовитыми, чем нейтрализуемая примесь, то есть при очистке раствора от некоторых примесей будет происходить его загрязнение другими примесями и маскировка неприятного запаха. По этой причине целесообразность применения для очистки водно-спиртовых растворов химических веществ, особенно сильнодействующих, постоянно подвергалась сомнению. В результате многочисленных исследований в промышленном производстве спирта сочли возможным производить очистку перманганатом калия, каустической и кальцинированной содой. (Обработку спирта названными веществами называли исправлением спирта, а полученный в результате такой обработки спирт — исправленным.) В настоящее время перманганат калия применяется в промышленной технологии приготовления некоторых высокосортных водок и широко используется в бытовых условиях. При этом, как правило, повторной перегонки не производят. Ниже описана применявшаяся в России технология очистки водно-спиртовых растворов с применением указанных веществ. Кратко рассмотрим механизм действия перманганата калия, кальцинированной и каустической соды на основные группы органических летучих примесей водно-спиртового раствора.

Перманганат калия (KMnO*»). Представляет собой кристаллы красно-фиолетового, почти черного цвета, с зеленоватым металлическим блеском. Плотность — 2,71 г/см . Растворимость в воде — 6,51 . Раствор КМп04 в дистиллированной воде дает нейтральную реакцию. Нейтрализующее действие КМп04 основано на его способности выделять атомарный кислород в водных

растворах, являющийся сильным окислителем в отношении ряда органических веществ. При этом, в зависимости от кислотности (щелочности) среды, разложение КМпСч происходит с участием веществ, определяющих кислотность (щелочность) среды, и различным образом. В частности, в щелочной или нейтральной среде окончательное превращение описывается уравнением

2KMnO4 = K2O + 2MnO2 + 3x0, то есть 2 молекулы KMnQ4 выделяют 3 атома кислорода; в кислой среде:

2KMnO4 = K2O + 2MnO + 5x0, то есть 2 молекулы KMnO4 выделяют 5 атомов кислорода.

Как отмечалось ранее, атомарный кислород может окислять спирты и альдегиды. Карбоновые кислоты, за исключением муравьиной, им не окисляются.

При Окислении спиртов водно-спиртового раствора в зависимости от кислотности (щелочности) раствора могут образовываться альдегиды и (или) карбоновые кислоты. В частности, в кислой среде метиловый спирт окисляется в формальдегид, этиловый — в уксусный альдегид, изоамиловый — в изоамиловый альдегид. Окисление этилового, метилового, изоамилового и других спиртов происходит одновременно согласно, например, уравнениям: CH3OH + O = CH2O+ H2O ¦ метиловый формаль- вода спирт дегид

CH2CH3OH + О - CH3CHO + H2O. этиловый уксусный вода спирт альдегид

Следовательно, из ядовитого метилового спирта образуется столі же ядовитый, неприятно пахнущий формальдегид (водный раствор формальдегида — формалин — сильнодействующий яд); из этилового спирта образуется уксусный альдегид, имеющий при сильном разбавлений приятный фруктовый запах; из изоамилового спирта Образуется изовалериановый альдегид, кипящий при 920C и также имеющий приятный фруктовый запах. Что касается формальдегида, то ситуация Облегчается тем, что он химически I Очень активен, в силу чего его молекулы сразу же вступают в ряд химических реакций и превращений. Преобладание того или иного продуктов этих реакций зависит от температуры, состава ]Ы - кислотности очищаемого раствора. Часть из них может окислиться, превратившись в муравьиную кислоту; часть после ряда реакций превращается в ацеталь — альдегидоподобное соединение, но с более высокой, чем у исходных альдегидов, температурой кицения и приятным запахом; и наконец, часть из |і!Йих может превратиться в малолетучее полимерное вещество параформ. В свою очередь, муравьиная кислота под действием атомарного кислорода перманганата калия окисляется с !!!образованием воды и углекислого газа.
Предыдущая << 1 .. 89 90 91 92 93 94 < 95 > 96 97 98 99 100 101 .. 118 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed