Научная литература
booksshare.net -> Добавить материал -> Химия -> Чернин И.3. -> "Эпоксидные полимеры и композиции" -> 31

Эпоксидные полимеры и композиции - Чернин И.3.

Чернин И.3., Смехов Ф.М., Жердев Ю.В. Эпоксидные полимеры и композиции — М.: Химия, 1982. — 232 c.
Скачать (прямая ссылка): epoxyds.djvu
Предыдущая << 1 .. 25 26 27 28 29 30 < 31 > 32 33 34 35 36 37 .. 98 >> Следующая

глава 4
Механизм межфазного взаимодействия в системах полимер — наполнитель весьма сложен и полностью не выяснен, хотя в последнее время эту проблему интенсивно исстедуют [3, 4, 59] на примере линейных кристаллических и в меньшей мере аморфных полимеров. В случае эпоксидных полимеров исследование взаимодействия полимер-наполнитель осложняется тем, что, во-первых, подобные материалы образуются в результате отверждения низкомолекулярных олигомеров в присутствии наполнителя, т. е. наполнитель может влиять не только на надмолекулярную, но и на молекулярную структуру полимера, а также на процесс отверждения олигомерного связующего, вступая в химические реакции, с реакционноспособными группами эпоксидных олигомеров отвердителей. Во-вторых, поскольку процесс образования эпоксидного полимера из олигомера и отвер-дителя происходит в присутствии наполнителя, трудно разделить влияние технологических факторов и поверхностные эффекты. Кроме того, образующиеся при отверждении сильно-сшитые системы неплавки и нерастворимы, что также сильно затрудняет их исследование.
В этой главе мы остановимся на основных закономерностях межфазного взаимодействия, между различными эпоксидными связующими и наполнителями. К наиболее важным и дискус-
84
смонным вопросам в этой области могут быть отнесены вопросы молекулярного взаимодействия на межфазной границе эпоксидный полимер — наполнитель и механизм влияния наполнителя на полимерную матрицу на сравнительно больших расстояниях от поверхности наполнителя, значительно превышающих радиус действия межмолекулярных сил. В настоящее время природа влияния наполнителя на больших расстояниях полностью не выяснена, и различные авторы предлагают разные объяснения наблюдаемым эффектам.
Поверхностное взаимодействие неорганических наполнителей с эпоксидными олигомерами
Для создания композиционных материалов необходимо наличие прочной термически и гидролитически устойчивой связи между поверхностью наполнителя и полимерной матрицей, обеспечивающей их совместную работу. Для обеспечения хорошей адгезии между эпоксидным полимером и неорганическим наполнителем необходимо образование прочной негидролизуемой химической связи, т. е. на поверхности наполнителя должны быть, группы, способные к химическому взаимодействию с функциональными группами эпоксидных связующих.
Как правило, в качестве неорганических наполнителей применяют различные оксиды, силикаты и некоторые другие соединения. Сравнительно подробные данные о химической структуре поверхности имеются только для оксидов и силикатов, и поэтому мы ограничимся рассмотрением этих классов материалов. Следует ожидать, что основные закономерности, справедливые для оксидов, будут наблюдаться и для поверхностей металлов (кроме благородных), так как они обычно покрыты оксидными пленками.
Наиболее характерной чертой всех этих поверхностей является наличие покрова из гидроксильных групп, которые могут сильно различаться по своему поведению и химической активности [5, 60—62]. Они включают как слабокислотные группы, как, например, БЮН и ВОН, так и амфотерные — А10Н, ВеОН и др. Число их может быть довольно значительным. Например,, на максимально гидратнрованной поверхности тонкой кремнеземной пленки, образующейся на силикатном стекле, содержится около 12,6 мкмоль/м2 гидроксильных групп [16]. Следует иметь в виду, что поверхность даже кристаллических оксидов весьма неоднородна и кроме групп ОН на ней имеются и другие центры, которые обладают повышенной адсорбционной и каталитической активностью. Например, координационно-ненасыщенные центры могут образовываться по схеме [62]:
=51—0—8!= —> + О—=
причем центры =Б1 обладают значительной каталитической активностью [5, 61, 62].
85
Поверхностные группы ОН сильно различаются по свойства^ даже на поверхностях чистых оксидов, как это было подробно исследовано на примере А1203 [60, 61]. В сложных силикатах поверхностные группы могут быть связаны с различными атомами, что приводит к еще большему различию в их свойствах. Кроме того, во многих случаях, особенно в многокомпонентных-полимерных стеклах, состав поверхности отличается от состава массы материала [5, 60]. Содержание активных групп может меняться на порядок в зависимости от предыстории наполнителя.
Гидроксильные группы играют наибольшую роль при взаимодействии наполнителей с эпоксидными смолами. Однако кроме гидроксильных групп на поверхности гидрофильных неорганических оксидов и силикатов адсорбируются молекулы воды, количество которой зависит от влажности окружающей среды. Адсорбированная вода оказывает отрицательное влияние на адгезию эпоксидных смол, препятствуя образованию прочных химических и водородных связей между поверхностью наполнителя и полимером, особенно при отверждении при комнатной температуре. Координационно-ненасыщенные центры практически полностью блокированы адсорбированными молекулами воды [60]. Адсорбированные молекулы и атомы создают новые поверхностные состояния или изменяют параметры существующих электронных поверхностных состояний [60], а энергетический спектр поверхности во многом определяет характер физического и химического взаимодействия полимер — наполнитель. То же следует сказать и о влиянии различных примесей в эпок- * сидных связующих, которые часто концентрируются на поверх- ? ности наполнителя. Даже адсорбция инертных газов (аргона н 8 ксенона) влияет на поверхностную проводимость оксидов и на знак заряда поверхностных ловушек [60]; с увеличением полярности адсорбируемого вещества эти эффекты усиливаются. В качестве примесей в эпоксидных смолах обычно присутствуют полярные соединения, которые активно адсорбируются поверх ностыо наполнителя и успешно конкурируют с молекулам!! эпоксидов и отвердителей, вытесняя их с поверхности, что приводит к резкому ухудшению адгезии.
Предыдущая << 1 .. 25 26 27 28 29 30 < 31 > 32 33 34 35 36 37 .. 98 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed