Научная литература
booksshare.net -> Добавить материал -> Химия -> Ашмарин И.П. -> "Нейрохимия " -> 8

Нейрохимия - Ашмарин И.П.

Ашмарин И.П., Антипенко А.Е. Нейрохимия — РАМН, 1996. — 470 c.
ISBN 5-900760-02-2
Скачать (прямая ссылка): neyrohimiya1996.djvu
Предыдущая << 1 .. 2 3 4 5 6 7 < 8 > 9 10 11 12 13 14 .. 188 >> Следующая

18
1.5. РИБОНУКЛЕИНОВЫЕ КИСЛОТЫ МОЗГА
Общее содержание РНК в большинстве нервных клеток очень велико. Среднее отношение РНК: ДНК достигает 50(!) и сравнительно редко бывает ниже 3. Это превышает отношение, характерное для особенно интенсивно метаболирующих клеток секреторных тканей (печени, поджелудочной железы, почек и др.), где оно составляет 2-4,5. В мотонейронах головного мозга и в спинальных ганглиях количество РНК в одной клетке достигает 500-2500 пг. (Напомним для сравнения, что в диплоидной клетке человека содержание ДНК близко к 6 пг). Такое обилие РНК обусловлено главным образом наличием мощного рибосомального белоксинтезирующего аппарата в цитоплазме нейрона. Быстро обменивающаяся мессенджер-PHК (мРНК), тоже относительно широко представленная в нейронах, занимает в количественном отношении скромное место (доли процента) по сравнению с рибосомальной РНК.
Рибосомальная РНК мозга и аппарат трансляции не имеют принципиальных отличий от других тканей и органов. Поэтому, отметив особую мощность последнего, сосредоточим далее внимание на особенностях синтеза и многообразии мРНК мозга, обусловливающих качественное своеобразие белков и многих других компонентов нервных клеток.
1.6. МОЗГОСПЕЦИФИЧЕСКАЯ ЭКСПРЕССИЯ ГЕНОВ
Так же как и во всех дифференцированных клетках и тканях организма, в нейронах и глиальных клетках мозга “работает” лишь часть генов. Это, с одной стороны, гены, ответственные за продукцию белков, необходимых для обеспечения метаболических процессов, более или менее сходных в разных клетках и тканях, а с другой стороны, гены, участвующие в синтезе белков, регулирующих специфические функции данной ткани. Активность остальных генов, не нужных для функций данных клеток, подавлена. Доля активных генов в каждой данной ткани обычно невелика — менее 10% — и неодинакова в разных клетках и тканях (в большинстве тканей 2 — 4%). В мозге эта доля выше, чем в других органах, что отражает особую сложность его функций. К сожалению, точные значения этих параметров пока не установлены.
В последние годы проводится систематическое исследование характера экспрессии большого числа индивидуальных ге-
19
нов в мозге млекопитающих (R.Milner, G.Sutcliffe, 1984). Для этого случайно выбранные из коллекции кДНК клонов мозга крысы последовательности гибридизуются с препаратами поли(А)+РНК из разных тканей в так называемых Нозерн блот-тах (препараты РНК фракционируются по длине электрофорезом в денатурирующих условиях в агарозных гелях и переносятся из. геля на нитроцеллюлозные или нейлоновые мембраны). По результатам гибридизации можно судить о присутствии соответствующих данному клону последовательностей РНК в исследуемых тканях, их количестве, гетерогенности и т.д. Анализ таким методом 191 случайно выбранного клона позволил авторам разбить все экспрессируемые в мозге поли(А)+РНК на четыре класса: I — “нерегулируемые” (~18% от всех исследованных клонов), т.е. одинаково экспрессируемые во всех исследованных тканях (мозг, печень, почка) и, скорее всего, кодирующие так называемые белки “домашнего хозяйства”, необходимые для жизнедеятельности любой клетки; II — регулируемые (-26%), т.е. экспрессируемые в клетках всех трех тканей, но в разной степени; III — мозгоспецифические (-30%), т.е. экспрессируемые только в клетках мозга; IV — редкие (-26%), т.е. присутствующие в мозге в количестве, недостаточном для строго воспроизводимого обнаружения использованным методом. Если считать мозгоспецифическими РНК III и IV классов, в эту категорию попадает более половины синтезируемых в мозге мРНК, что хорошо согласуется с оценками, полученными с помощью методов суммарной ДНК-РНК-гибридизации.
¦ Важно отметить, что определение нуклеотидной последовательности клонированных мозгоспецифических мРНК позволяет воспроизвести аминокислотную последовательность кодируемого белка.
Такой анализ был осуществлен Сатклиффом, например, для одного из клонов, кодирующих РНК III класса (р1В236) . Этот клон гибридизуется с моз-госпеиифической мРНК, присутствующей в разных отделах мозга крысы, но в разном количестве. Кодируемый этой РНК полипептид не содержит участков гомологии с ранее изученными белками.
С помощью антител к синтетическим фрагментам этого полипептида изучена его локализация в мозге. Он обнаружен в аксонах, иннервирующих клетки Пуркинье в мозжечке, пирамидные нейроны поля САЗ гиппокампа; в радиальных волокнах глубоких слоев цингулярной и соматосенсорной коры; в группах волокон свода, стриатума, латерального обонятельного тракта и других структур. Источником этих волокон являются нейроны медиального ядра трапециевидного тела, центральной покрышки моста, вентромедиального и базальноаркуатного ядер гипоталамуса, а также нейроны, разбросанные по другим структурам.
Эту работу Сатклиффа и соавторов можно считать образцом технически выполнимой и универсальной методологии поиска новых мозгоспецифиче-
20
ских мРНК и исследования первичной структуры, мест синтеза и функциональной роли кодируемых ими мозгоспецифических белков.
Предыдущая << 1 .. 2 3 4 5 6 7 < 8 > 9 10 11 12 13 14 .. 188 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed