Научная литература
booksshare.net -> Добавить материал -> Биология -> Тейлор Д. -> "Биология в 3 томах. Tом 2" -> 62

Биология в 3 томах. Tом 2 - Тейлор Д.

Тейлор Д. , Грин Н., Стаут У. Биология в 3 томах. Tом 2. Под редакцией Сопера Р. — M.: Мир, 2004. — 436 c.
ISBN 5-03-003686-5
Скачать (прямая ссылка): biolv3tt22004.PDF
Предыдущая << 1 .. 56 57 58 59 60 61 < 62 > 63 64 65 66 67 68 .. 247 >> Следующая


БОТАНИКА

ММА им. И.М. Сеченова

Д. Тейлор, Н. Грин, У. Стаут. БИОЛОГИЯ, т. 2

_Транспорт у растений 111

Б

Плазмодесма

Клеточная / Цитоплазма Тонопласт Вакуоль

стенка / I Плазмалемма I

Апопластный путь — по клеточным стенкам

Симпластный путь — по цитоплазме и плазмодесмам

Вакуолярный путь — через плазмалеммы, цитоплазму и тонопласты (играет в транспорте воды сравнительно небольшую роль)

Рис. 13.8. Б. Схематическое изображение группы растительных клеток, на котором суммированы все возможные пути передвижения воды (растворов). Одновременно могут использоваться сразу несколько путей. Такие пути могут функционировать и в листе, и в коре корня. Вакуолярная «переброска» ионов обязательно включает активный транспорт. Важнейшую роль играет апопластный путь, минимальную — вакуолярный.

зообмена (доля потерь воды минимальная, однако у листопадных деревьев после сбрасывания листвы через чечевички теряется основная масса воды).

Количество воды, теряемое растением за счет транспирации, бывает очень велико. Травянистые растения, например хлопчатник или подсолнечник, за сутки теряют таким путем 1—2 л воды, а старый дуб — более 600 л.

Вода поступает в листья по сосудам ксилемы. Строение этих сосудов описано в разд. 6.2.1. Ксилема составляет часть проводящих пучков, которые пронизывают весь лист, образуя в нем сеть тонких жилок. Эти пучки оканчиваются одним или немногими слабо лигнифицированны-ми ксилемными сосудами, через которые вода легко проходит в окружающие клетки мезофилла. На рис. 13.8 показаны три пути ее дальнейшего движения: апопластный (по клеточным стенкам), симпластный (по цитоплазме и плазмодесмам) и вакуолярный (через вакуоли).

13.13. Почему траспирация идет в основном через устьица, а не через кутикулу и чечевички?

13.3.1. Апопластный транспорт

Апопласт — это система соприкасающихся клеточных стенок, образующая непрерывную сеть по всему растению. До 50% такого целлюлозного каркаса представляет собой как бы «свободное пространство», которое может быть занято водой. При ее испарении в межклетники с поверхности клеток мезофилла в непрерывном апопластном слое воды возникает натяжение, и весь он по механизму объемного потока подтягивается к месту убывания благодаря когезии («сцеплению») водных молекул (см. разд. 13.4). В апопласт вода поступает из ксилемы.

13.3.2. Симпластный транспорт

Симпласт — это система взаимосвязанных протопластов растения. Протопласты соседних клеток соединяются между собой плазмодесмами — цитоплазматическими тяжами, проходящими через поры в клеточных стенках (рис. 13.8, Б). Вода с любыми растворенными в ней веществами, попав в протопласт одной клетки, может двигаться дальше по симпласту, не пересекая никаких мембран. Это движение иногда облегчается благодаря упорядоченному току цито-

БОТАНИКА

плазмы. Симпластный транспорт воды для растения важнее вакуолярного.

13.3.3. Вакуолярный транспорт

В этом случае вода движется из вакуоли одной клетки в вакуоль соседней через симпласт и апопласт, и, следовательно, через тонопласты и плазмалеммы, за счет осмоса (рис. 13.8, Б). Градиент водного потенциала при этом устанавливается следующим образом.

Вода испаряется с поверхности мезофилль-ных клеток в межклетники, главным образом в относительно обширные дыхательные полости под устьицами. Если взять в качестве примера клетку 1 на рис. 13.8, А, то потеря ею воды приведет к падению ее гидростатического и, следовательно, водного потенциалов. (Для простоты допустим, что сначала вся система была в состоянии равновесия, т. е. этот потенциал был повсюду одинаков.) Теперь же у клетки 2 он станет относительно выше, и вода устремится из нее по градиенту в клетку 1. Это приведет к снижению водного потенциала клетки 2 относительно клетки 3. Так в листе создается градиент водного потенциала на всем пути от сосудов ксилемы с ее более высоким водным потенциалом до клеток мезофилла, потенциал которых гораздо ниже. Вода в такой системе движется за счет осмоса. Хотя мы и описываем этот транспорт как ступенчатый, важно помнить, что градиент водного потенциала, который создается в листе, на самом деле непрерывен и вода равномерно течет по градиенту, подобно тому, как жидкость движется по фитилю.

Иногда создается неверное представление, что вода движется в листе по градиенту осмотического потенциала. Однако, хотя градиент водного потенциала существует, данных, которые позволили бы предположить, что осмотический потенциал в соответствующих клетках сильно различается, нет. Транспирационный ток поддерживается прежде всего за счет разности гидростатических потенциалов: потеря клеткой даже небольшого количества воды гораздо сильнее влияет на тургорное давление, чем на концентрацию растворенных веществ. То же самое можно сказать о корне (разд. 13.5), в котором есть градиенты водного и гидростатического потенциалов, но не всегда существуют градиенты осмотического потенциала.

ММА им. И.М. Сеченова

13.3.4. Выход воды через устьица
Предыдущая << 1 .. 56 57 58 59 60 61 < 62 > 63 64 65 66 67 68 .. 247 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed