Научная литература
booksshare.net -> Добавить материал -> Биология -> Скулачев В. -> "Рассказы о биоэнергетике " -> 44

Рассказы о биоэнергетике - Скулачев В.

Скулачев В. Рассказы о биоэнергетике — М.: Молодая гвардия, 1985. — 194 c.
Скачать (прямая ссылка): rasskaziobioenergetike1985.djvu
Предыдущая << 1 .. 38 39 40 41 42 43 < 44 > 45 46 47 48 49 50 .. 67 >> Следующая

Час от часу не легче! Сначала мы обнаружили, что нам надо уследить за частицей в 30 тысяч раз более мелкой, чем ее носитель, а теперь выясняется, что время Перемещения этой частицы измеряется тысячными или Даже мйллионными долями секунды. За это время протон1 проходит путь, равный' 50 ангстремам, или 0,000000005 метра.
Невелика дистанция!..
А ведь нужно засечь местонахождение протона на промежуточных этапах его перемещения в белковой молекуле, если мы хотим начертить его траекторию и понять, почему он движется так, а не иначе. Значит, интересующие нас отрезки времени и расстояния в действительности еще меньше.
В решении этой на первый взгляд неподъемной проблемы помог метод, который уже однажды выручил нас, когда мы пытались наладить прямое измерение генерации электрического тока и напряжения мембранными белками.
Помните, как удалось зарегистрировать образование разности потенциалов бактериородопсином? ТГротеоли-посомы, содержащие в свой мембране бактериородопсин, прикрепили к плоской искусственной мембране, по обе стороны которой были электроды. Освещение вызывало транспорт ионов Н+ через мембрану протеолипо-сом, что регистрировалось подключенным к электродам вольтметром как уменьшение количества положительных зарядов в том отсеке, куда обращена покрытая протео-липосомами сторона плоской мембраны.
Современная электрометрическая техника достигла таких вершин, что уже можно измерять генерацию разности потенциалов со скоростью 10—7—10—8 секунды. Это гораздо быстрее, чем время, затрачиваемое молекулой бактериородопсина на перенос одного протона через мембрану. Стало быть, само но себе измерение перемещений протона в мембране не встречает принципиальных трудностей. Но как это сделать практически?
Протеолипосомы, покрывающие поверхность плоской мембраны на отверстии радиусом около 1 миллиметра, содержат в общей сложности порядка миллиона молекул бактериородопсина. Проблема состоит в том, чтобы синхронизировать работу всех этих фотогенераторов, каждый из которых работает сам по себе. Оказалось, что в принципе и это можно сделать. Существуют лазеры, генерирующие световую вспышку продолжительностью менее 10-7 секунды. Если осветить молекулы бактериородопсина такой вспышкой, то все они сработают практически одновременно и только один раз.
Итак, предельно быстрые скорости измерения разности потенциалов и предельно короткие вспышки света — вот что необходимо, если мы собираемся следить за
судьбой протона, переносимого бактериородопсином. К этому надо добавить предельно высокую чувствительность измерительной аппаратуры, чтобы уловить изменение электрических параметров бактериородопсина при небольших смещениях протона внутри его молекулы.
Работать на пределе технических возможностей можно лишь при условии, что исследуемый объект сам по себе стабилен и выдает некий повторяющийся от опыта к опыту результат.
Казалось бы, бактериородопсин должен лучше, чем что бы то ни было, подходить для такой работы (вспомним чрезвычайную устойчивость этого белка к всевозможным изменениям условий среды). Спору нет, сам по себе бактериородопсин стабилен, да вот плоская мембрана, на которую нужно сорбировать протеолипосомы с этим белком, не слишком прочна. К тому же ее прочность уменьшается после присоединения протеолипосом. Как выйти из этого нового затруднения?
Чтобы ответить на поставленный вопрос, придется подумать о причине нестойкости плоской искусственной мембраны, сделанной из фосфолипидов. Причина эта кроется, по-видимому, в огромной диспропорции между толщиной и протяженностью мембраны. По существу, жидкокристаллическая мембрана, имеющая в поперечнике около 5• 10—9 метра, закрывает отверстие диаметром около 2-10—3 метра. В привычных для повседневной жизни масштабах это все равно что пленкой толщиной 2,5 миллиметра перекрыть морской пролив глубиной и шириной в 1 километр.
Столь тонкие искусственные мембраны —¦ излюбленный объект исследований по моделированию свойств природных мембран, имеющих ту же толщину. Однако так ли необходимо работать с тонкой мембраной в нашем случае? Ведь у нас она просто сорбент для протеолипосом. Если уж мы решили следить за движением протона в молекуле бактериородопсина, то в об-щем-то безразлично, на чем сидит бактериородопсиновая протеолнпосома — на тонкой мембране или какой-то другой подложке.
И мы отказались от тонких («черных») мембран, использованных в первых наших опытах с протеолипосо-мами. Вместо них взяли коллодиевую пленку, пропитанную раствором фосфолипидов в углеводороде декане. Это позволило не только стабилизировать систему,
ио и увеличить в 10 раз диаметр отверстия между двумя отсеками, куда помещены электроды.
В результате количество бактериородопсиновых протеолипосом, сорбированных на поверхности фильтра, было в 100 раз больше, чем в случае тонкой мембраны. Фотоэлектрический эффект системы, пропорциональный содержанию бактериородопсина, также должен был увеличиться на два порядка. Если бы даже в этом случае эффект оказался все еще слишком мал, чтобы быть зарегистрированным вольтметром, то есть меньше уровня шумов измерительной аппаратуры, мы могли бы вытянуть его из-под этих шумов, многократно повторяя вспышку лазера и используя ЭВМ для отделения эффекта от шумов.
Предыдущая << 1 .. 38 39 40 41 42 43 < 44 > 45 46 47 48 49 50 .. 67 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed