Научная литература
booksshare.net -> Добавить материал -> Биология -> Шевелуха Е.А. -> "Сельскохозяйственная биотехнология" -> 81

Сельскохозяйственная биотехнология - Шевелуха Е.А.

Шевелуха Е.А., Калашникова С.В., Дегтярев С.В., Кочиева Е.З. Сельскохозяйственная биотехнология — М.: Высшая школа, 1998. — 416 c.
Скачать (прямая ссылка): selskohoztehnika1998.djvu
Предыдущая << 1 .. 75 76 77 78 79 80 < 81 > 82 83 84 85 86 87 .. 180 >> Следующая

С помощью биолистической пушки были протрансформиро-ваны однодольные растения, такие, как кукуруза, рис, пшеница, ячмень. При этом были получены стабильные растения-трансформанты.
Кроме успехов в получении трансгенных однодольных, био-листическая трансформация применяется для прямого переноса ДНК в эмбриогенную пыльцу и дальнейшего быстрого получения трансгенных дигаплоидных растений, которые являются важным этапом в селекционной работе. В настоящее время этим методом была проведена трансформация растений табака и после регенерации гаплоидных растений получены стабильные трансформанты.
3.7. УЛУЧШЕНИЕ КАЧЕСТВА ЗЕРНА МЕТОДАМИ ГЕННОЙ ИНЖЕНЕРИИ
Одной из основных задач улучшения растений является повышение качества синтезируемых продуктов: белков, жиров, полисахаридов и других веществ, определяющих питательную и техническую ценность.
У злаков наибольший интерес представляют белки, запасаемые в эндосперме. Запасные белки, в основном, кодируются несколькими сходными по своей структуре и по нуклеотидному составу генами, объединяемые в мультигенные семейства. Обычно экспрессия этих генов строго тканеспецифична и происходит на определенной стадии развития семени. В большинстве случаев запасные белки имеют несбалансированный для питания человека и животных аминокислотный состав. Так, запасные белки бобовых — легумины — характеризуются низким уровнем аминокислоты метионина, а запасные белки злаков — проламины — бедны лизином, триптофаном и треонином. Дефицит этих аминокислот снижает питательную и кормовую ценность семян.
Улучшение аминокислотного состава белка методами традиционной селекции довольно затруднительно в связи с тем, что гены, определяющие важные сельскохозяйственные признаки, часто бывают сцеплены и, следовательно, наследуются вместе с нежелательными признаками. Так использование в селекции кукурузы и ячменя мутантов типа опак-2, хайпроли, имеющих относительно высокое содержание лизина в зерне, не привело к значительному улучшению качества, так как у мутантных форм повышенное содержание лизина коррелировало с уменьшением синтеза основных запасных белков зеина и гордеина и, в конечном итоге, с уменьшением урожайности.
В этой связи наиболее перспективным является использование генно-инженерных методов при создании новых улучшенных сортов, что позволяет ввести в геном только сельскохозяйственно полезный признак, без сцепления с ненужными признаками. Так, например, введение дополнительных кодонов лизина в индивидуальные гены проламинов привело бы к синтезу белков, обогащенных лизином, и улучшило бы кормовую и питательную ценность белка. Рассмотрим этапы генно-инженерных манипуляций, приводящих к получению трансгенных растений с улучшенным аминокислотным составом белка.
Эта работа включает ряд этапов: 1) клонирование генов запасных белков; 2) изучение механизмов тканеспецифичной и временной экспрессии белков и определение последовательно-204
стей ДНК, определяющих данный механизм; 3) целенаправленное изменение последовательности генов запасных белков с целью улучшения аминокислотного состава; 4) создание векторов, содержащих измененный ген; 5) введение модифицированных генов в растения.
Получение трансгенных растений с улучшенными качествами невозможно без огромного подготовительного этапа, включающего детальное изучение как всего гена, так и его элементов, участвующих в регуляции синтеза белка.
На сегодняшний день охарактеризованы десятки генов запасных белков злаков, бобовых и ряда других растений, изучены структура и свойства этих генов.
Общий план изолирования генов запасных белков включает следующие этапы. 1) получение и частичную очистку соответствующей мРНК; 2) синтез и клонирование кДНК; 3) изолирование из геномных библиотек последовательности гена конкретного запасного белка.
В настоящее время клонировано 10 генов гордеинов ячменя, гены а- и р-глиадинов и глютенина пшеницы, зеинов кукурузы, легумина бобовых, пататина картофеля и ряд других. При этом следует отметить, что для некоторых из генов определена даже нуклеотидная последовательность.
Дальнейшее исследование генов запасных белков показало общность строения этих генов, что представляется логичным, так как они выполняют одинаковую функцию. Так, общим для подавляющего большинства генов запасных белков является отсутствие интронов. Кроме того,у них на расстоянии 300 н. п. от точки начала транскрипции расположена специфическая последовательность в 25 н. п., названная эндосперм-боксом.
Синтез запасных белков имеет жесткую регуляцию: гены экспрессируются только в единственной ткани (проламины злаков только в эндосперме зерна) и в течение короткого периода развития зерна. Чем же это достигается? Для изучения механизма тканеспецифической и временной экспрессии генов используют так называемый делиционный анализ, который предполагает вырезание различных фрагментов гена, с тем чтобы определить значимость того или иного фрагмента для функционирования целого гена. Так, методом делиционного анализа было показано, что именно 25-нуклеотидная последовательность эндосперм-бокса стимулирует экспрессию генов запасных белков в эндосперме зерна. Более того, было показано, что продукт любого гена, перед которым находится последователь-
Предыдущая << 1 .. 75 76 77 78 79 80 < 81 > 82 83 84 85 86 87 .. 180 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed