Научная литература
booksshare.net -> Добавить материал -> Биология -> Шевелуха Е.А. -> "Сельскохозяйственная биотехнология" -> 30

Сельскохозяйственная биотехнология - Шевелуха Е.А.

Шевелуха Е.А., Калашникова С.В., Дегтярев С.В., Кочиева Е.З. Сельскохозяйственная биотехнология — М.: Высшая школа, 1998. — 416 c.
Скачать (прямая ссылка): selskohoztehnika1998.djvu
Предыдущая << 1 .. 24 25 26 27 28 29 < 30 > 31 32 33 34 35 36 .. 180 >> Следующая

При проведении работ по криосохранению необходимо, прежде всего, учитывать специфику растительных клеток: отбирать мелкие клетки, с маленькой вакуолью и пониженным содержанием воды; разрабатывать в каждом отдельном случае подходы замораживания и последующего оттаивания растительных клеток. При криосохранении встречается ряд трудностей, одна из которых связана с защитой замораживаемых клеток и тканей от осмотического стресса и механического разрушения структур в результате образования и роста кристаллов льда внутри клетки. Одновременно с этим необходимо правильно подбирать условия, обеспечивающие высокую выживаемость клеток при оттаивании и рекультивации.
Несмотря на многообразие работ в этом направлении, в них все же наметились общие приемы, лежащие в основе криосохранения: обработка клеток перед замораживанием, применение криопротекторов, соблюдение определенного режима замораживания в интервале от 0 до —40° С (в редких случаях до -70° С), а также специальные предосторожности при оттаивании объектов.
Процесс криоконсервации, как правило, начинается с подготовки культуры клеток к замораживанию. Это может быть достигнуто несколькими способами, предусматривающими культивирование клеток на питательных средах, содержащих различные осмотически активные вещества: маннит или сорбит в концентрации 2—6%, аминокислоты и среди них, в первую очередь, пролин, чье значение для связывания воды в клетках растений широко известно, а также у-aминомасляная кислота.
Подбор криопротекторов, веществ, уменьшающих повреждение клеток от осмотического и механического стресса, проводят
эмпирически по принципу наименьшей токсичности и оптимального эффекта. Среди всех известных криопротекторов выделяются такие легко проникающие в клетки вещества, как ди-метилсульфоксид (ДМСО, 5—10%), глицерин (10—20%), а также непроникающие высокомолекулярные—поливинилпироли-дон (ПВП), декстран, полиэтиленгликоль (ПЭГ) с молекулярной массой 6000.
Большое значение при криосохранении имеет правильно подобранный режим замораживания от 0 до —40° С. Как правило, для всех объектов устанавливается скорость замораживания 0,5—1°С в минуту и всю эту работу проводят на специальном оборудовании, обеспечивающем программное замораживание. Такие приборы выпускает специальное конструкторское технологическое бюро с опытным производством при Институте проблем криобиологии и криомедицины (г. Харьков).
Таким образом, медленное замораживание и использование криопротекторов позволяет освободить клетку от свободной воды, и при —40° С клетки становятся полностью обезвоженными, что дает возможность проводить дальнейшее замораживание, а именно погружать ампулы с растительным материалом в жидкий азот.
Хранение материала в жидком азоте практически не лимитировано. Например, в криобанке Института физиологии растений РАН хранятся клетки моркови, которые находятся в жидком азоте около 20 лет, меристемы картофеля — более 10 лет и др.
Оттаивание и проверка жизнеспособности клеток после хранения в жидком азоте является последним этапом технологии криосохранения. Если замораживание осуществляют медленно, постепенно, то оттаивание должно быть проведено как можно быстрее. Для этого ампулы помещают в водяную баню с температурой 40°, а иногда и 60° С и выдерживают до полного исчезновения последнего кристаллика льда.
Для определения жизнеспособности клеток после оттаивания применяют наиболее простой, быстрый и вполне удовлетворительный способ — окраска витальным красителем (0,1 %-ным феносафранином или 0,25%-ным раствором сини Эванса), в результате которой мертвые клетки окрашиваются, а живые нет. Окончательным критерием, безусловно, служит четкое возобновление роста и деления клеток при рекультивации на искусственных питательных средах после оттаивания.
Экспериментально было показано, что клетки после хранения в жидком азоте не теряют способности к делению, регенерации растений, не уменьшается продуктивность синтеза вторичных метаболитов (клетки продуценты) и т. д. Так, Институ-72
том физиологии растений РАН совместно с НПО по картофелеводству разработаны методы криосохранения меристем четырех сортов картофеля и показана возможность из 20% хранящихся меристем регенерировать целые растения, которые при высадке в поле не отличались по всем признакам, включая темпы роста и продуктивность, от обычных пробирочных растений (С. Манжулин и др., 1982). Более подробно о технике криосохранения можно узнать из обзорных работ А.С. Попова.
Таким образом, технология, связанная с криосохранением растительных объектов, развивается и постоянно совершенствуется. Несомненно, эта технология имеет свое будущее, так как уже сегодня криобанки могут значительно облегчить работу селекционеров, предоставив им возможность широко использовать пул генов сортов, в том числе старой селекции и диких видов, а также исчезающих видов растений.
Клеточная селекция растений. Сомаклональная вариабельность. Метод культуры изолированных клеток, тканей и органов растений in vitro, широко используемый для решения многих фундаментальных вопросов клеточной биологии, физиологии и генетики растений, в настоящее время находит все большее применение и при создании новых биотехнологий. Начиная с первых работ по культивированию растительных клеток, тканей и органов особый интерес у исследователей вызвал вопрос о том, какие клеточные изменения могут происходить в изолированных клетках, растущих на искусственных питательных средах, и причины, их вызывающие. С разработкой техники получения растений-регенерантов из каллусной ткани появилась возможность получать новые формы растений, отличающиеся как по фенотипическим, так и по генетическим признакам от исходных растений. Такое разнообразие среди клеточных линий и растений-регенерантов получило название «сомаклоны», хотя еще в 70—80-е годы нашего столетия было принято называть растения, регенерировавшие из каллусной ткани, «калликлонами», а из протопластов — «протоклонами».
Предыдущая << 1 .. 24 25 26 27 28 29 < 30 > 31 32 33 34 35 36 .. 180 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed