Научная литература
booksshare.net -> Добавить материал -> Биология -> Шевелуха Е.А. -> "Сельскохозяйственная биотехнология" -> 118

Сельскохозяйственная биотехнология - Шевелуха Е.А.

Шевелуха Е.А., Калашникова С.В., Дегтярев С.В., Кочиева Е.З. Сельскохозяйственная биотехнология — М.: Высшая школа, 1998. — 416 c.
Скачать (прямая ссылка): selskohoztehnika1998.djvu
Предыдущая << 1 .. 112 113 114 115 116 117 < 118 > 119 120 121 122 123 124 .. 180 >> Следующая

Для получения очищенного высококонцентрированного препарата лизина культуральную жидкость после фильтрования подкисляют соляной кислотой до pH 1,6—2,0. Образовавшийся в результате взаимодействия с соляной кислотой раствор моно-хлоргидрата лизина направляют на колонки с катионитом, где происходит сорбция аминокислоты и отделение ее от культуральной жидкости. Затем проводят десорбцию аминокислоты путем элюирования 0,5—5%-ным раствором аммиака. Элюат упаривают под вакуумом при 60° С до концентрации сухого вещества 30—50%, после чего подкисленный соляной кислотой раствор монохлоргидрата высушивают и используют как кормовой концентрат. Путем перекристаллизации полученной соли можно получить препараты лизина с содержанием монохлоргидрата 97—98%.
В процессе производства лизина кроме основного продукта применение находят также побочные продукты и отходы. Так, после отделения культуральной жидкости в осадке остаются клетки бактерий — продуцентов, фосфаты и другие компоненты питательной среды, которые после высушивания могут быть использованы в качестве кормовой белковой добавки. Технологические стоки и промывные воды после выделения монохлоргидрата лизина, содержащие в растворенном состоянии аминокислоты, другие ценные компоненты культуральной жидкости, остаточный лизин, объединяют и полученную смесь упаривают, а затем высушивают с наполнителем до влажности 10%, в результате получают кормовой препарат с высоким содержанием белков (до 40%) и незаменимых аминокислот.
В ряде стран (Япония, США) для получения лизина применяется химико-энзиматический метод, позволяющий создать вьр сокоэффективные технологии, сочетающие достоинства химического и микробиологического синтеза. Эти технологии основаны на ферментативной конверсии в лизин а-амино-е-капролакта-ма, который получают путем химических реакций из циклогек-сана:
циклогексан D.L-капролактам L-лизин
В результате химического синтеза образуется рацемическая смесь D- и L-капролактама. Эта смесь направляется в реактор с ферментом гидролазой а-амино-е-капролактама, который катализирует превращение L-капролактама в L-лизин. D-изомер капролактама далее превращается в L-изомер с помощью специфической рацемазы. При такой технологии получения лизина его содержание в реакционной смеси по завершении рабочего цикла достигает свыше 150 г/л.
Продуцентами гидролазы а-амино-е-капролактама служат некоторые штаммы дрожжей из родов Cryptococcus, Candida. Trichosporon. Дрожжи выращиваются в щелочной среде на оптимизированной для синтеза фермента питательной среде, содержащей активаторы — Mn2+, Mg2+, Zn2+. Для ферментативной реакции превращения капролактама в лизин может использоваться клеточная суспензия дрожжевых клеток с активным ферментом, клеточный экстракт (после разрушения и отделения клеток) или очищенный фермент. Рацемазу, катализирующую превращение D-капролактама в L-изомер, получают из бактерий Achromobacter, Flavobacterium и др.
Процессы изомеризации D-капролактама в L-изомер и превращение L-капролактама в лизин можно проводить одновременно. Для этого в водный раствор D, L-капролактама вводится необходимое количество дрожжевых и бактериальных клеток, задаются оптимальные режимы температуры, pH, аэрации. На выходе из реактора образуется преимущественно один продукт — L-лизин, который выделяют из смеси и далее очищают и сушат.
Кроме изложенной выше технологии получения,чистых препаратов лизина разрабатываются и другие, сочетающие в себе использование химического синтеза для получения предшественников лизина и энзиматическое превращение их в лизин на конечной стадии производства, что позволяет значительно интенсифицировать производственный процесс и снизить себестоимость продукции.
Микробиологический синтез триптофана. Наряду с лизином разработаны промышленные технологии получения кормовых и высокоочищенных препаратов другой незаменимой аминокислоты— триптофана. Для производства этой аминокислоты применяют как одноступенчатый синтез с помощью бактериальных ауксотрофных мутантов с нарушенной регуляцией синтеза аминокислот, так и двухступенчатый синтез, включающий вначале получение предшественника триптофана, а затем его ферментативное превращение в конечный продукт — триптофан.
У бактерий и многих других организмов аминокислота триптофан образуется из эритрозо-4-фосфата и фосфоенолпиро-виноградной кислоты через ряд последовательных реакций, включающих образование шикимовой и хоризмовой кислот, а непосредственным предшественником триптофана в процессе его синтеза является антраниловая кислота (схема 2).
Синтез триптофана аллостерически ингибируется конечными продуктами, которые действуют на ферменты, катализирующие начальные этапы превращений, связанные с образованием хоризмовой кислоты. Из схемы 2 видно, что для смещения метаболических реакций по пути преимущественного образования триптофана необходимо блокировать превращение хоризмовой кислоты в префеновую. Это достигается действием мутагенных факторов. У мутантов с пониженной активностью ферментов, катализирующих превращение хоризмовой кислоты в префеновую, наблюдается повышенный синтез аминокислоты триптофана, однако для нормального развития этих мутантов в питательную среду необходимо добавлять дефицитные аминокислоты— фенилаланин и тирозин—в количествах, не вызывающих регуляторное ингибирование ферментов синтеза триптофана.
Предыдущая << 1 .. 112 113 114 115 116 117 < 118 > 119 120 121 122 123 124 .. 180 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed