Научная литература
booksshare.net -> Добавить материал -> Биология -> Попов Е.М. -> "Проблема белка. Том 3: структурная организация белка" -> 26

Проблема белка. Том 3: структурная организация белка - Попов Е.М.

Попов Е.М. Проблема белка. Том 3: структурная организация белка — М.: Наука, 1997. — 604 c.
ISBN 5-02-001911-9
Скачать (прямая ссылка): problemabelkat31997.djvu
Предыдущая << 1 .. 20 21 22 23 24 25 < 26 > 27 28 29 30 31 32 .. 303 >> Следующая

Ответственными за свойства соединений являются структурные организации молекул. "Поскольку окружающий нас мир никем не построен, - полагают И. Пригожин и И. Стенгерс, - перед нами возникает необходимость дать такое описание его мельчайших "кирпичиков" (т.е. микроскопической структуры мира), которое объяснило бы процесс самосборки" [22. С. 47]. Следовательно, наличие у так называемой живой материи специфических черт следует ожидать уже в организации биологических молекул. Если специфика живой материи, действительно, проявляется не только в комбинации определенного набора соединений (что очевидно), но и в особом, отсутствующем у неорганических веществ качестве биологических молекул (что не очевидно), то проблема живого и неживого трансформируется в проблему структурной организации молекул одушевленной и неодушевленной природы. Такая формулировка, однако, страдает неопределенностью, поскольку понятия "живая и неживая материя", "мельчайшие кирпичики" и им подобные лишены необходимой конкретности и скорее могут быть отнесены к собирательным, фило-
софским, нежели научным, категориям. Проблему структурной организации биологических молекул целесообразно разделить на две части -внутреннюю и внешнюю, и рассматривать их раздельно. В первой, внутренней части, речь идет о соединениях, синтезируемых в клетках микроорганизмов, растений и животных, и поиске ответов на вопросы о том, в чем состоит специфика молекулярной структурной организации биологических объектов, все ли они наделены ею и в какой степени. Во второй части после выявления соединений, в которых специфическая организация представлена наиболее ярко, проблема получает окончательное решение при сопоставлении молекулярных свойств типичных представителей биологических и неорганических систем.
Среди многочисленных компонентов биосистем молекулярного уровня исключительная роль в процессах жизнедеятельности, бесспорно, принадлежит белкам. Активно участвуя практически во всех протекающих в клетках и организме процессах, они наделены поистине универсальными биофизическими и биохимическими свойствами. Белки обладают способностью к взаимному превращению всех необходимых для жизни видов энергии: тепловой, механической, химической, электрической и световой. Кроме того, они входят в состав соединительных и костных тканей, кожи, волос и других структурных элементов всех уровней живого организма, выполняя динамическую опорную функцию и обеспечивая нежесткую взаимосвязь органов, их механическую целостность и защиту. Нет смысла перечислять все функции белков, спектр их действия огромен. Отметим лишь, что по разнообразию своих физических и химических проявлений белки несопоставимы с возможностями любого другого класса соединений живой и неживой природы. Они "умеют" делать все, и именно поэтому назначение генетического аппарата любого живого организма сведено к хранению информации только о белках и к их синтезу. Биосистемы всех уровней, в том числе и молекулярного, можно считать "произведениями" белков. При функциональной универсальности природных аминокислотных последовательностей деятельность каждого отдельного представителя этого класса уникальна в отношении функции, механизма действия, природы лиганда и внешней среды. И, наконец, белки проявляют высочайшую активность в физиологических, мягких условиях и не образуют при своем функционировании побочных продуктов.
Ничем подобным, как по ширине функционального спектра, так и специфичности и эффективности реализации любой функции этого спектра, не обладает ни один класс искусственных, синтезированных человеком соединений. Таким образом, из всего того, что составляет молекулярный уровень биосистем, только белки (или прежде всего белки) могут быть ответственны за фундаментальные особенности живого - великое разнообразие органического мира, избирательность и эффективность процессов жизнедеятельности, наличие активного начала и удивительной целесообразности в организации живой материи. Количество различных белков, участвующих в функционировании организма, определяет его морфологическую и физиологическую сложность, а следовательно, и положение в иерархической организации живой природы. Чем же могут быть обусловлены столь необычные как по своему характеру, так и разно-
образию свойства белковых молекул, представляющие собой исторические объекты, возникшие и изменяющиеся в процессе эволюционного развития?
Прежде всего, белки уникальны в отношении химического строения. Это гетерогенные нерегулярные полипептидные последовательности 20 а-аминокислот и их производных, включающих самые разнообразные по своим химическим и физическим свойствам, т.е. валентным и невалентным взаимодействиям, атомные группы. В химическом построении белковых молекул уже можно усмотреть огромные потенциальные возможности к вариации физико-химических свойств. И в то же время белки представляют собой фактически единственный класс соединений, химические свойства которых нельзя непосредственно соотнести с химическим строением молекул. Поведение белков всецело определяется исключительной, присущей только им пространственной структурной организацией. Лишаясь ее, белки теряют все свои биологические свойства. За редким исключением, лишь белковые цепи способны самопроизвольно свертываться в строго детерминированные структуры, геометрия и кон-формационная динамика которых в физиологических (нативных) условиях полностью определяются аминокислотной последовательностью. Трехмерные структуры белков индивидуализированы, очень сложны и имеют строгий порядок, не сводящийся, однако, к периодичности. Способность природной полипептидной цепи к пространственной самоорганизации и обретению определенной молекулярной структуры - самая яркая особенность белков, отсутствующая у молекул искусственных полимеров, в том числе у полученных человеком поли-а-аминокислот. В растворе синтетический полимер находится в состоянии статистического клубка, флуктуации которого могут приводить к появлению в цепи регулярных участков лишь ближнего порядка. При этом, однако, ни при каких условиях не образуются стабильные трехмерные структуры, тем более идентичные для всех молекул данного полимера. В твердом виде синтетический полимер пребывает в аморфном состоянии, которое может включать частично кристаллическую фазу из беспорядочно ориентированных друг относительно друга зародышевых микрокристаллических областей. Искусственные полимеры отличаются качественно и по своим химическим свойствам, которые в той или иной мере воспроизводят свойства соответствующего мономера и могут быть описаны ограниченным набором реакций, специфичных для повторяющегося звена в свободном состоянии.
Предыдущая << 1 .. 20 21 22 23 24 25 < 26 > 27 28 29 30 31 32 .. 303 >> Следующая

Реклама

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed

Есть, чем поделиться? Отправьте
материал
нам
Авторские права © 2009 BooksShare.
Все права защищены.
Rambler's Top100

c1c0fc952cf0704ad12d6af2ad3bf47e03017fed